Препараты для удлинения теломер. Теломера - это что такое? Теломеры как генетические бомбы замедленного действия

Учёные веками пытаются понять, от чего зависит продолжительность жизни человека, и как можно её увеличить. Генетики , медики изучают способы , а недавно учёные даже выявили необычное влияние Солнца на . Тем не менее, единственным неоспоримым фактом в биогеронтологии является зависимость процессов старения организма от состояния теломер — концевых участков хромосом. Чем последние крупнее, тем дольше и лучше будет жить человек.

Прежде учёные уже демонстрировали, что здоровый образ жизни и, следовательно, продлить жизнь пациента. Однако теперь команда из Стэнфордского университета показала, как можно использовать медицинское вмешательство извне для непосредственного увеличения концевых участков хромосом.

Исследователи провели эксперимент, в ходе которого культивировали человеческие клетки и увеличили их теломеры. В результате основная группа клеток дольше вела себя как молодая, размножаясь внутри чашки Петри, тогда как контрольная группа, на которой не испытывали новую методику, быстро начала стареть и увядать.

Новая технология включает в себя использование модифицированной РНК и позволяет культивировать большее количество клеток для проведения экспериментов по испытанию лекарственных препаратов. Клетки кожи с удлинёнными теломерами учёные смогли поделить (на две новые клетки) в 40 раз больше, чем обычные клетки, не подвергавшиеся терапии. В случае с мышечными клетками культура увеличилась втрое по сравнению с контрольной группой.

В рамках предыдущих исследований учёные установили, что теломеры у молодых людей имеют длину, эквивалентную 8-10 тысячам нуклеотидов. По мере взросления и старения эти "колпачки" сокращаются и в какой-то момент достигают критической длины — именно тогда клетка прекращает делиться и отмирает.

"Мы нашли новый способ, который позволяет удлинить человеческие теломеры на целую тысячу нуклеотидов, а значит, фактически, повернуть время вспять. Наша разработка важна не только для исследований в области биогеронтологии, но и для биологов по всему миру, которые работают с клеточными культурами, поскольку данная методика позволяет значительно увеличить продолжительность жизни культивируемых клеток", — говорит ведущий автор исследования Хелен Блау (Helen Blau), профессор микробиологии и иммунологии в Стэнфорде.

Модифицированная РНК, которая является основным инструментом новой технологии, переносит инструкции из генов ДНК в "белковые фабрики" клеток. РНК, использованная в стэнфордском эксперименте, содержала последовательность, кодирующую каталитическую субъединицу TERT , активный компонент природного фермента теломеразы (не путать с теломерами!).

Теломераза создаётся в стволовых клетках, в том числе и тех, что отвечают за развитие сперматозоидов и яйцеклеток. Этот процесс даёт биологические гарантии того, что следующее поколение будет обеспечено здоровыми клетками с максимально длинными теломерами. Большинство других типов клеток, однако, экспрессируют гораздо меньшее количество чудодейственного фермента теломеразы.

Разработанная стэнфордскими учёными технология имеет важное преимущество перед другими потенциальными методами — методика имеет временный эффект. На первый взгляд, кажется, что это не плюс, а минус. Но дело в том, что неконтролируемое деление клеток в теле человека связано с огромным риском быстрого развития рака. Блау и её коллеги отмечают в пресс-релизе , что постепенное и поэтапное удлинение теломер гораздо безопаснее любых других аналогов.

Мышцы пациента с дистрофией Дюшенна, которую потенциально можно излечить при помощи новой методики

Модифицированная РНК в данном случае предназначена для снижения иммунного ответа клетки на лечение и позволяет TERT-кодирующему сигналу длиться дольше, чем обычно. Однако сама РНК исчезает уже через 48 часов, по истечении которых удлинённые теломеры вновь начинают постепенно сокращаться с каждым новым этапом деления клетки.

"У нашей методики есть ещё одно важное преимущество. Проведённый нами эксперимент стал первым случаем в истории биомедицины, когда введение модифицированной РНК не привело к иммунному ответу против теломеразы. Таким образом, в отличие от других технологий наша является неиммуногенной. Без дополнительных рисков мы научились оборачивать вспять процессы старения, которые протекают на протяжении более чем десяти лет в здоровом организме", — рассказывает Блау, чья вышла в издании FASEB Journal.

Учёные также сообщают, что новая методика может лечь в основу не только технологий продления жизни здоровых людей, но и терапий, предназначенных для лечения многих генетических заболеваний.

К примеру, Блау заметила, что длина теломер у пациентов с мышечной дистрофией Дюшенна заметно меньше, чем у представителей контрольной группы. Таким образом, учёные с помощью своей методики смогут с длинными теломерами, которые помогут излечить тяжёлый недуг.

1674 0

Каждое деление клетки требует копирования ее ДНК. За это отвечает фермент ДНК-полимераза.

Он несколько напоминает поезд: движется по рельсам в виде двойной спирали ДНК и "буква за буквой" воспроизводит ее нуклеотидную последовательность, изготовляя идентичную молекулу, которая остается рядом с оригиналом.

Однако у ДНК-полимеразы есть существенный недостаток. По причинам, углубляться в которые нет необходимости, вся молекула ДНК этим ферментом никогда не копируется.

Иными словами, при каждом клеточном делении небольшой ее участок теряется, и скопированная цепочка оказывается короче исходной. Конец хромосомы постепенно "обгрызается".

Вторая возникающая с хромосомами проблема - их тенденция часто рваться из-за действия радиации и других неблагоприятных факторов. Клетке приходится сшивать возникающие обрывки. При этом, разумеется, она ни в коем случае не должна путать их с концами интактных хромосом, и, следовательно, ей надо каким-то образом различать эти два типа участков ДНК.

Частично такая проблема решается природой с помощью теломер . Эти концевые участки хромосом не содержат генетической информации, представляя собой монотонные повторы короткой последовательности нуклеотидов. Их укорочение при многократных копированиях ДНК и клеточных деления никакого вреда организму не приносит - пока теломеры остаются достаточно длинными. однако ее полного исчезновения бояться не стоит, поскольку существует фермент теломераза, который удлиняет эту бессмысленную концевую последовательность ДНК.

Точнее говоря, он решает сразу две проблемы. С одной стороны, экспрессирующие теломеразу клетки восстанавливают свои укорачивающиеся при каждом делении теломеры и могут делиться неограниченно долго. С другой стороны, сохранение теломер не позволяет механизму, устраняющему разрывы ДНК, сшивать разные хромосомы: бессмысленные концевые повторы распознаются соответствующими ферментами и оставляются в покое.

Люди и некоторые другие виды остроумно используют эту теломернотеломеразную систему для защиты от рака. Злокачественные клетки убивают организм только после многократного деления. Без теломеразы это невозможно: если теломеры не будут восстанавливаться, они постепенно исчезнут, концы хромосом, перестав отличаться от внутрихромосомных разрывов, в конце концов, соединятся, а в результате раковые клетки как минимум не смогут больше делиться. Поэтому кодирующие теломеразу гены в них по мере возможности отключаются.

Для восстановления активности этого фермента и, соответственно, способности раковых клеток к делению потребовалось бы много очень "удачных" мутаций. Хотя этот вопрос изучен меньше, у пожилых носителей цитомегаловируса (ЦМВ) наблюдается также избыток дефектных СD4-лимфоцитов, называемых Т-хелперами, которые помогают другим компонентам иммунной системы организовать контрнаступление на проникшие в организм патогены. Иными словами, у этих внешне здоровых людей происходит такая же клональная экспансия нацеленных на ЦМВ, но лишенных рецептора CD28 СD4-клеток, как и в их СD8-популяции. Результат - аналогичное перенасыщение специализированными лимфоцитами, не реагирующими на активацию антиген-презентирующими клетками.

Не активируясь ими, эти дефектные Т-хелперы не выполняют своей функции, т.е. не обеспечивают мобилизацию на борьбу с врагом СD8-лимфоцитов и других иммунных клеток. Такая ситуация - вместе с упоминавшейся выше неспособностью Т-киллеров эффективно атаковать свои мишени - дает цитомегаловирус беспрепятственно размножаться. Это ведет к дополнительным клональным экспансиям и дальнейшему усугублению иммунной дисфункции.

Клонально размножившиеся ЦМВ-специфичные СD8-клетки анергичны (неэффективны) и с других точек зрения. При первом заражении мышиным вариантом этого вируса молодые мыши вырабатывают очень активные Т-киллеры, распознающие не менее 24 его антигенов. Однако, когда инфекция становится хронической, их нацеленные на ЦМВ спецподразделения сокращаются до клонов, реагирующих в среднем лишь на пять таких белков. Кроме того, у пожилых людей с цитомегаловирусом анергические СD8-клетки реагируют на вирус слабее, чем у молодых его носителей, вырабатывая значительно меньше гамма-интерферона, одного из важнейших химических усилителей иммунологического ответа.

Плохие полководцы хороших армий

Вероятно, неспособность анергических Т-лимфоцитов бороться с ЦМВ-инфекцией ведет ко многим другим типичным для пожилых людей иммунологическим дисфункциям, которые нельзя объяснить никаким непосредственным эффектом старения этих клеток. Некоторые из таких эффектов можно было бы ожидать в связи с изменением выработки ими цитокинов, влияющих на активность прочих бойцов врожденной и адаптивной частей иммунной системы, однако другие вызывают гораздо более стойкие последствия, чем просто проблемы с химической сигнализацией.

Например, согласно широко распространенному сейчас мнению, старение Т-клеток объясняет возрастное снижение эффективности В-лимфоцитов, синтезирующих антитела к чужим антигенам и метящих таким образом патогены как мишени для разрушения другими клетками. Для созревания и выработки антител В-клеткам необходимы сигналы от Т-хелперов, поэтому доказательство того, что старость Т-клеток вызывает снижение эффективности В-лимфоцитарной системы, независимое от ее собственного старения, было лишь вопросом времени.

К сожалению, никто пока не выяснял, обусловлен ли такой эффект индуцированной цитомегаловирусом клональной экспансией Т-лимфоцитов, играющей важнейшую роль в развитии прочих аспектов старения всей их популяции. В результате мы не знаем, насколько сильно влияет на В-клетки такой специфический феномен, как анергизация Т-клеток.

Даже если отвлечься от механистических объяснений и молекулярно-биологических механизмов, реальное влияние ползучего подтачивания всей иммунной системы анергическими СD8-клонами на человеческое здоровье становится очевидным при изучении конкретных результатов этого процесса. Опыты на животных показывают, что возрастная клональная экспансия отдельных СD8-субпопуляций снижает разнообразие присутствующих в организме Т-клеток, а в итоге и их способность обеспечивать эффективную иммунную защиту. Примеры аналогичных этому эффектов у нашего с вами вида - ухудшение СD8-ответа на прививки от гриппа и происходящее несколько позже ослабление Т-клеточного иммунитета против вируса Эпштейна-Барр у людей с клональной экспансией ЦМВ-специфичных клеток памяти.

Подсчет потерь

Даже если бы влияние на организм клонов анергических Т-лимфоцитов ограничивалось повышением заболеваемости и смертности от инфекционных болезней, у нас было достаточно причин желать избавления от этих клеток. Однако есть достаточно веская причина полагать, что они способствуют также возрастному ослаблению организма, которые не находит очевидного иммунологического объяснения.

Прежде всего, у пожилых людей, пострадавших от гриппа или спровоцированной им пневмонии, наблюдаются удивительно долгие их последствия, существенно ускоряющие прочие патологические процессы и движение человека в сторону старческой беспомощности, а в конечном итоге и на кладбище. По многим данным, перенесенный в солидном возрасте грипп повышает риск смерти от неожиданных причин типа инфаркта миокарда и инсульта, а также от как будто не связанных с этой инфекцией респираторных заболеваний; кроме того, обостряется течение застойной сердечной недостаточности.

Далее, такое долгое выздоровление биологически старых людей от гриппа, накладываясь на их общую слабость, обусловленную другими аспектами старения, вероятно, способствует серьезной, зачастую пожизненной функциональной деградации и инвалидизации. Грипп нередко укладывает пожилого человека в больницу, порой на целых три недели, а исследования показывают, что каждый день постельного режима означает для него потерю до 5% мышечной силы и 1% аэробической выносливости. Однако, видя, как женщина в возрасте с трудом открывает дверь или, поскользнувшись на льду, ломает себе шейку бедра, никто не думает о перенесенной ею простуде или иммунологическом старении.

Можно вспомнить и о других старческих недугах, в развитии которых, по-видимому, существенную роль играют клоны анергических Т-клеток, но свидетельства этого не настолько очевидны. Одна из таких патологий - остеопороз. У пожилых женщин с остеопорозными переломами обнаружены более высокие уровни анергических СD8-клеток, чем у их сверстниц со здоровыми костями. При этом некоторые молекулярные механизмы наводят на мысль, что обилие таких дефектных лимфоцитов являются именно причиной, а не следствием снижение плотности и прочности костной ткани.

Кроме того, несмотря на сравнительную спекулятивность данного предположения, ползучая "клонализация" Т-клеточной популяции могла бы влиять даже на ход атеросклероза. Она ведет к хроническому воспалительному процессу, который, как известно, портит артерии, способствуя возникновению инфаркта миокарда. В пользу этой гипотезы говорит более высокий, чем у здоровых людей, уровень анергических СD8-клеток у пациентов с ишемической болезнью сердца - как при ЦМВ-инфекции, так и в ее отсутствие. Таким образом, ослабление иммунной системы является, по-видимому, как облегчающим фактором, так и результатом инфекционного поражения артерий, которое в свою очередь благоприятствует развитию атеросклероза со всеми его потенциальными последствиями.

Как уже говорилось, точные доказательства связи анергических клонов Т-клеток с этими отдаленными эффектами пока отсутствуют. Однако пара интересных исследований в рамках осуществляемого сейчас Европейским союзом проекта Т-КИС (Т-клеточный иммунитет и старение) , уже приблизил нас к более четкой оценке летальной роли этой причины возрастного иммунодефицита - что бы в конечном итоге ни было написано в свидетельстве о смерти.

Эти исследования касались двух когорт "самых старых" жителей Швеции, т.е. тех, кому за 80 и за 90, причем охватывали только людей, практически здоровых по сравнению с большинством своих хронологических сверстников: с отсутствием в анамнезе серьезных заболеваний сердца, головного мозга, печени и почек, без рака, диабета, признаков активных инфекций или химических маркеров воспаления и не принимающих никаких лекарств, заметно действующих на иммунную систему, включая недавние вакцинации.

Европейские ученые обнаружили даже среди этих относительно здоровых стариков несколько человек с комплексом скрытых иммунологических дефектов ("фенотипом иммунного риска"), например различными формами возрастного поражения, которые можно объяснить цитомегаловирус-инфекцией, а значит, в не меньшей степени и клональной экспансией анергических ЦМВ-специфичных CD8-клеток.

Тот факт, что некоторые представители изученной здоровой, несмотря на большую хронологическую старость (по современным стандартам) выборки были свободны от клонов анергических Т-клеток, позволил проследить их "чистый" эффект в подгруппе, где присутствие таких лимфоцитов могло действительно способствовать развивающимся в следующие два года болезням, а не являться их результатом.

Никого не удивил результат наблюдений: фенотип иммунного риска, как и предполагалось, повышал вероятность скорой кончины, однако масштабы такого влияния шокировали. Оно было особенно выражено в группе людей старше 90, где этот дефицит позволял объяснить 57% смертности. Напоминаем: речь идет о возрастном ослаблении иммунной системы, вызываемом вирусом, активность которого многими из нас вообще не замечается, а в прочих случаях обычно ощущается лишь как легкое недомогание с повышением температуры.

Важно правильно понять все значение этого открытия. Фенотип иммунного риска способствовал всем причинам смертности, а не только повышал риск умереть от инфекционной болезни. Хотя внешние патогены, действительно, убивают многих биологически старых людей, микробные атаки объясняют полученные результаты далеко не полностью.

Война против клонов

По мере накопления данных, говорящих о роли клонов ЦМВ-специфичных CD8-клеток в возрастном ослаблении иммунитета, стала приоткрываться и светлая сторона этого феномена. Если иммунологическое старение в такой значительной степени объясняется экспансией Т-лимфоцитов, значит, ее предупреждение, а тем более обращение вспять должно (соответственно) защищать или восстанавливать молодое состояние иммунной системы независимо от нашего хронологического возраста. А значит, вакцины будут действовать на стариков так же эффективно, как и на юношей. И пожилые люди сбросят неподъемный груз инфекций, от которых молодежь избавляется, всего лишь пару ней не походив в школу или на работу.

Один из вариантов профилактики, поддерживаемый многими иммунологами, - вакцинация против цитомегаловируса. Еще до того, как выяснилась центральная роль ЦМВ-инфекции в возрастном ослаблении иммунной системы, опубликованный в 1999 доклад Медицинского института Национальной академии наук США, отмечая неудовлетворительные темпы разработки новых вакцин, поставил на первое место в списке неотложных задач создание эффективной анти-ЦМВ-вакцины. Подчеркнем, что авторы доклада исходили только из накопленной к тому времени информации о человеческих и финансовых потерях, вызываемых этим вирусом.

Позднее Национальное агентство США по программе вакцинации, придя к такому же выводу, запросило у правительства дополнительные средства на исследования в области вакцины против цитомегаловируса. Сейчас, когда получены четкие доказательства важной роли ЦМВ-инфекции в старении иммунной системы, многие специалисты высказываются за дальнейшее увеличение этих ассигнований.

Хотя польза такого подхода и выглядит бесспорной, стоит напомнить, что речь идет главным образом о профилактической стратегии. Она снизит риск заражения ЦМВ и, возможно, усилит иммунный ответ на него уже инфицированных людей, но не избавит их от вируса полностью и, естественно, не устранит накопленного за долгие годы его присутствия иммунологического ущерба.

Следовательно, такая вакцина спасет относительно небольшой процент младенцев от тяжелых врожденных дефектов и предотвратит безвременную кончину многих больных СПИДом и пациентов с пересаженными органами, однако почти не улучшит состояния сотен миллионов людей, уже страдающих от хронических инфекций и повышенной чувствительностью к патогенам из-за ослабления иммунной системы клональной экспансией анергических СD8-клеток.

Другие предложения, хотя бы потенциально устраняющие некоторые аспекты иммунологического старения, связаны с попыткой лечения дефектов уже существующих анергических Т-клеток методами генной терапии. Идея в том, что снабжение этих лимфоцитов генами, кодирующими их утраченные или недостаточно активные белки (например, СD28-рецептор или теломеразу), позволило бы восстановить эффективность выполнения ими своих специфических задач и предупредить угнетение прочих Т-клеточных популяций. Хотя подобный подход и выглядит логичным, польза его представляется слишком ограниченной, а путь клинической разработки - чересчур туманным.

Что же касается конкретно теломеразы, последствия ее активизации в любой клетке вызывают еще много вопросов и требуют более серьезного рассмотрения. Эти сомнения связаны с еще одной возрастной патологией - раком. Поскольку необходима хотя бы крошечная теломера для продолжения делений, каждое из которых ее укорачивает, клеткам с потенциально канцерогенными мутациями для превращения в злокачественную опухоль требуется механизм восстановления теломеры.

Почти все раковые клетки запускают его, срывая собственные тормоза с теломеразных генов. Стоит ли снабжать этими генами дефектные клетки, тем более учитывая риск случайного "заражения" геннотерапевтическими векторами "посторонних" клеток, в которых ни в коем случае нельзя включать теломеразу?

Более правомерным решением выглядит не реабилитация бездействующих лимфоцитов, а их уничтожение. Пожилым носителям цитомегаловируса, по-видимому, не хватает функциональных Т-киллеров, нацеленных на зараженные этим вирусом клетки. Причина такого дефицита - перенасыщение организма огромными субпопуляциями анергических лимфоцитов. Даже если нам удастся вернуть всем им полную иммунологическую компетентность, они будут создавать проблему, все еще ограничивая ресурсы, необходимые для сохранения наивных лимфоцитов и клеток памяти, необходимых для защиты от других патогенов.

Теоретически все выглядит просто. Избавившись от анергических Т-клонов, мы освободим иммунологические пространство для здоровых клеток других типов и специализаций, а том числе и для активных нацеленных на ЦМВ лимфоцитов.

Остается решить вопрос: как очистить организм от расплодившихся бездельников, оставив в живых всех (или хотя бы почти всех) их заложников, которых мы хотим избавить от угнетателей-тунеядцев. Онкологи уже располагают достаточно эффективными и не слишком вредными для организма в целом лекарственными и радиационными методами уничтожения сравнительно крупных опухолей в конкретных участках тела, однако этот подход неприменим в случае анергических Т-клеток, не сконцентрированных в отдельных местах, а распределенных по различным тканям и органам.

По той же причине бесполезно говорить о хирургическом вмешательстве. Опухоль можно вырезать (или как минимум урезать), добившись с определенным риском того или иного клинического улучшения. Однако в ближайшем будущем никаких способов индивидуального хирургического удаления анергических Т-клеток не предвидится.

Тем не менее, несмотря не неприменимость традиционных противораковых методов в качестве образца для разработки необходимой нам биотехнологии, последние впечатляющие успехи онкологов наводят на мысль о принципиальной возможности терапии, обеспечивающей избирательное избавление организма от не желающих умирать клеток.

Аромат Гливека

Даже если никто из ваших знакомых не болен раком, вы вполне могли слышать о гливеке (STI-571, или иматинибе), ирессе (ZD1839, или гефитинибе), герцептине (трастузумабе) и других менее известных или еще прокладывающих путь к больным лекарствах той же группы. Речь идет о так называемой "прицельной противораковой терапии", которую с полным основанием считают революционным новшеством. Даже формулировки типа "чудесных исцелений", абсурдно часто используемые в популярной медицинской литературе, не кажутся преувеличением тем, кто лично наблюдал исчезновение злокачественных опухолей в собственном теле или в организме своих близких, не сталкиваясь при этом с тяжелейшими побочными эффектами облучения и химиотерапии.

Конечно, эти лекарства тоже дают побочные эффекты - от них не свободно ни одно "нарушающее метаболизм" средство. Например, герцептин нацелен на ростовой рецептор HER-2: связывая его, он препятствует неконтролируемому размножению раковых клеток, которое стимулируется избытком копий этого рецептора на их поверхности. Однако нормальные клетки размножаются "как надо" тоже благодаря HER-2-стимуляции, только сравнительно слабой.

А в результате применение герцептина может вызывать смертельно опасную застойную сердечную недостаточность - побочный эффект, который недавние исследования обнаружили также у некоторых пациентов, пользующихся гливеком, который считался в высшей степени безвредным медикаментом - именно потому, что нацелен только на аномальную форму одного из трансдукторов ростовых сигналов.

Аналогичным образом, влияя на устойчивость анергических Т-лимфоцитов к апоптозу, можно было бы стимулировать их "самоубийство", однако остается вопрос: как не погубить попутно нормальные клетки?

Эти средства не дают эффекта, пока на них не действует определенное низкоэнергетическое лазерное облучение, которое со своей стороны никак не сказывается на людях, не получавших таких медикаментов: лучи без всякого вреда проходят сквозь их тело. Однако, когда они проникают в клетки, накопившие фотодинамическое лекарство, его свойства приводят к их резкому разогреванию или насыщению свободными радикалами. В результате эти раковые клетки гибнут, а все остальные (не считая находящихся в непосредственной близости) никак не страдают.

Первое ФДТ-средство, Фотофрин, было допущено в развитых странах для лечения далеко зашедшего рака легких, пищеварительного тракта и мочевыводящих путей еще в начале 1990-х. Сейчас используются или находятся в завершающей стадии разработки более совершенные варианты такой терапии.

Самое перспективное из ее средств, Рс-4, избирательно накапливается в определенных типах раковых клеток, поскольку хорошо растворяется в жирах, которыми особенно богаты эти клетки. Проникнув в них, Рс-4 благодаря особенностям своей структуры встраиваются в митохондрии. Последующее лазерное облучение запускает свободнорадикальную бомбежку, которая либо индуцирует апоптоз, либо - в худшем случае - убивает раковые клетки "грязным способом", сшивая их белки, окисляя липидные мембраны, разрушая ДНК мутациями.

20 Января 2014

XXI столетие ознаменовалось наступлением новой эры в области диетологии, продемонстрировавшей огромную пользу, которую может принести здоровью человека правильный подбор рациона. С этой точки зрения поиски секрета «таблеток от старости» уже не выглядят несбыточной мечтой. Последние открытия ученых указывают на то, что определенным образом подобранное питание может, по крайней мере частично, изменить ход биологических часов организма и замедлить его старение. В данной статье современная информация, полученная специализирующимися в области диетологии учеными, проанализирована в контексте улучшения состояния теломер, являющегося ключевым механизмом замедления старения в буквальном смысле этого слова.

Теломеры – это повторяющиеся последовательности ДНК, локализующиеся на концах хромосом. При каждом делении клетки теломеры укорачиваются, что в конечном итоге приводит к утрате клеткой способности к делению. В результате клетка вступает в фазу физиологического старения, ведущую к ее гибели. Накопление таких клеток в организме повышает риск развития заболеваний. В 1962 году Леонард Хейфлик (Leonard Hayflick) совершил революцию в биологии, разработав теорию известную как теория предела Хейфлика. Согласно этой теории, максимальная потенциальная продолжительность жизни человека составляет 120 лет. Согласно теоретическим подсчетам, именно к этому возрасту в организме становится слишком много клеток, не способных делиться и поддерживать его жизнедеятельность. Пятьдесят лет спустя появилось новое направление науки о генах, открывшее человеку перспективы оптимизации его генетического потенциала.

Различные стрессовые факторы способствуют преждевременному укорочению теломер, что, в свою очередь, ускоряет биологическое старение клеток. Многие пагубные для здоровья возрастные изменения организма ассоциированы с укорочением теломер. Доказано существование взаимосвязи между укорочением теломер и заболеваниями сердца, ожирением, сахарным диабетом и дегенерацией хрящевой ткани. Укорочение теломер снижает эффективность функционирования генов, что влечет за собой триаду проблем: воспаление, окислительный стресс и снижение активности иммунных клеток. Все это ускоряет процесс старения и повышает риск развития возрастных болезней.

Еще одним важным аспектом является качество теломер. Например, пациенты с болезнью Альцгеймера далеко не всегда имеют короткие теломеры. В то же время их теломеры всегда демонстрируют выраженные признаки функциональных нарушений, коррекции которых способствует витамин Е. В определенном смысле теломеры являются «слабым звеном» ДНК. Они легко повреждаются и нуждаются в восстановлении, однако не располагают мощными репарационными механизмами, используемыми другими регионами ДНК. Это приводит к накоплению частично поврежденных и плохо функционирующих теломер, низкое качество которых не зависит от их длины.

Одним из подходов к замедлению процесса старения является применение стратегий, замедляющих процесс укорочения теломер, одновременно защищающих их и устраняющих возникающие повреждения. В последнее время специалисты получают все больше данных, согласно которым этого можно добиться путем правильного подбора рациона питания.

Еще одной привлекательной перспективой является возможность удлинения теломер с одновременным поддержанием их качества, что в прямом смысле позволит повернуть стрелки биологических часов вспять. Этого можно добиться путем активизации фермента теломеразы, способного восстанавливать утраченные фрагменты теломер.

Базовое питание для теломер

Активность генов проявляет определенную гибкость, и питание является превосходным механизмом компенсирования генетических недостатков. Многие генетические системы закладываются в течение первых недель внутриутробного развития и формируются в раннем возрасте. После этого они подвергаются влиянию широкого спектра факторов, в т.ч. пищевых. Это влияние можно назвать «эпигенетическими настройками», определяющими то, как гены проявляют заложенные в них функции.

Длина теломер также регулируется эпигенетически. Это означает, что на нее оказывает влияние рацион питания. Плохо питающиеся матери передают детям неполноценные теломеры, что в будущем повышает риск развития заболеваний сердца (для клеток пораженных атеросклерозом артерий характерно большое количество коротких теломер). Напротив, полноценное питание матери способствует формированию у детей теломер оптимальной длины и качества.

Для полноценного функционирования теломер необходимо их адекватное метилирование. (Метилирование – это химический процесс, заключающийся в присоединении к нуклеиновому основанию ДНК метильной группы (-CH3).) Основным донором метильных групп в клетках человека является кофермент S-аденозилметионин, для синтеза которого организм использует метионин, метилсульфонилметан, холин и бетаин. Для нормального протекания процесса синтеза этого кофермента необходимо присутствие витамина В12, фолиевой кислоты и витамина В6. Фолиевая кислота и витамин В12 одновременно вовлечены во многие механизмы, обеспечивающие стабильность теломер.

Наиболее важными пищевыми добавками для поддержания теломер являются качественные витаминные комплексы, принимаемые на фоне рациона, содержащего адекватное количество белков, в особенности серосодержащих. В такой рацион должны входить молочные продукты, яйца, мясо, курица, бобовые, орехи и зерновые. Яйца являются наиболее богатым источником холина.

Для поддержания хорошего настроения мозгу также требуется большое количество метильных доноров. Хронический стресс и депрессия часто свидетельствуют о дефиците метильных доноров, что означает плохое состояние теломер и их подверженность преждевременному укорочению. Это является основной причиной того, что стресс старит человека.

Результаты исследования с участием 586 женщин показали, что теломеры участниц, регулярно принимавших мультивитамины, были на 5% длиннее теломер женщин, не принимавших витамины. У мужчин наиболее высокие уровни фолиевой кислоты соответствовали более длинным теломерам. Еще одно исследование с участием людей обоих полов также выявило положительную взаимосвязь между содержанием фолиевой кислоты в организме и длиной теломер.

Чем большую нагрузку вы испытываете и/или чем хуже себя чувствуете эмоционально или психически, тем больше внимания вам следует уделять получению достаточного количества базовых питательных веществ, которые помогут не только вашему мозгу, но и вашим теломерам.

Минералы и антиоксиданты способствуют сохранению стабильности генома и теломер

Питание является превосходным механизмом замедления износа организма. Многие питательные вещества защищают хромосомы, в том числе теломеразную ДНК, и повышают эффективность работы механизмов восстановления ее повреждений. Недостаток антиоксидантов ведет к увеличению количества повреждений под действием свободных радикалов и повышению риска деградации теломер. Например, теломеры пациентов с болезнью Паркинсона короче, чем теломеры здоровых людей такого же возраста. При этом степень деградации теломер непосредственно зависит от выраженности свободно-радикальных повреждений, ассоциированных с заболеванием. Также показано, что женщины, употребляющие с пищей мало антиоксидантов, имеют короткие теломеры и входят в группу повышенного риска развития рака молочной железы.

Для функционирования многих ферментов, вовлеченных в копирование и восстановление повреждений ДНК, необходим магний. Одно из исследований на животных показало, что недостаток магния ассоциирован с увеличением выраженности свободно-радикальных повреждений и укорочением теломер. Эксперименты на клетках человека продемонстрировали, что отсутствие магния приводит к стремительной деградации теломер и подавляет деление клеток. В день, в зависимости от интенсивности нагрузки и уровня стресса, организм человека должен получать 400-800 мг магния.

Цинк играет важную роль в функционировании и восстановлении ДНК. Недостаток цинка приводит к появлению большого количества разрывов цепочек ДНК. У пожилых людей недостаток цинка ассоциирован с короткими теломерами. Минимальное количество цинка, которое человек должен получать в день, составляет 15 мг, а оптимальные дозировки составляют около 50 мг в день для женщин и 75 мг – для мужчин. Получены данные, согласно которым новый цинкосодержащий антиоксидант карнозин уменьшает скорость укорочения теломер в фибробластах кожи, одновременно замедляя их старение. Карнозин также является важным антиоксидантом для мозга, что делает его хорошим помощников в борьбе со стрессом. Многие антиоксиданты способствуют защите и восстановлению ДНК. Например, установлено, что витамин С замедляет укорочение теломер в клетках сосудистого эндотелия человека.

Впечатляет тот факт, что одна из форм витамина Е, известная как токотриенол, способна восстанавливать длину коротких теломер в фибробластах человека. Также есть данные о способности витамина С стимулировать активность удлиняющего теломеры фермента теломеразы. Эти данные свидетельствуют в пользу того, что употребление определенных продуктов питания способствует восстановлению длины теломер, что потенциально является ключом к обращению процесса старения вспять.

ДНК находится под непрерывной атакой свободных радикалов. У здоровых полноценно питающихся людей система антиоксидантной защиты частично предотвращает и восстанавливает повреждения ДНК, что способствует сохранению ее функций.

По мере старения человека его здоровье постепенно ухудшается, в клетках происходит накопление поврежденных молекул, запускающих процессы свободно-радикального окисления и препятствующих восстановлению повреждений ДНК, в том числе теломер. Этот процесс, нарастающий по принципу «снежного кома», может усугубляться такими состояниями, как ожирение.

Воспаление и инфекции способствуют деградации теломер

На современном уровне понимания биологии теломер наиболее реалистичной перспективой является разработка методов замедления процесса их укорочения. Возможно, со временем человеку удастся достичь своего предела Хейфлика. Это возможно только в том случае, если мы научимся препятствовать износу организма. Сильные стрессы и инфекции являются двумя примерами причин такого износа, ведущего к укорочению теломер. Оба воздействия имеют выраженный воспалительный компонент, стимулирующий продукцию свободных радикалов и вызывающий повреждения клеток, в том числе теломер.

В условиях сильного воспалительного стресса гибель клеток стимулирует их активное деление, что, в свою очередь, ускоряет деградацию теломер. Кроме того, формирующиеся при воспалительных реакциях свободные радикалы также повреждают теломеры. Таким образом, мы должны прикладывать максимальные усилия к подавлению как острых, так и хронических воспалительных процессов и предотвращению инфекционных заболеваний.

Однако полное исключение из жизни стрессов и воспалительных реакций является невыполнимой задачей. Поэтому хорошей идеей при травмах и инфекционных заболеваниях является добавление в рацион витамина D и докозагексаеновой кислоты (омега-3 жирной кислоты), способных оказать поддержку теломерам в условиях воспаления.

Витамин D модулирует количество тепла, генерируемого иммунной системой в ответ на воспаление. При дефиците витамина D существует опасность перегрева организма, синтеза огромного количества свободных радикалов и повреждения теломер. Способность переносить стресс, в том числе инфекционные заболевания, во многом зависит от уровня витамина D в организме. В исследовании с участием 2 100 близнецов женского пола в возрасте 19-79 лет ученые продемонстрировали, что наиболее высокие уровни витамина D ассоциированы с наиболее длинными теломерами, и наоборот. Разница в длине теломер при наиболее высоких и наиболее низких уровнях витамина D соответствовала примерно 5 годам жизни. Еще одно исследование показало, что употребление взрослыми с избыточной массой тела 2 000 МЕ витамина D в день стимулирует активность теломеразы и способствует восстановлению длины теломер, несмотря на метаболический стресс.

Подавление воспалительных процессов естественным образом путем коррекции рациона питания является ключом к сохранению теломер. Немаловажную роль в этом могут сыграть омега-3 жирные кислоты – докозагексаеновая и эйкозапентаеновая. Наблюдение за группой пациентов с заболеваниями сердечно-сосудистой системы в течение 5 лет показало, что наиболее длинные теломеры были у пациентов, употреблявших большее количество этих жирных кислот, и наоборот. При проведении еще одного исследования было установлено, что повышение уровня докозагексаеновой кислоты в организме пациентов с умеренными нарушениями познавательной функции снижало скорость укорочения их теломер.

Существует очень большое количество пищевых добавок, подавляющих активность воспалительного сигнального механизма, опосредуемого ядерным фактором каппа-би (NF-kappaB). Экспериментально доказано положительное влияние на состояние хромосом, оказываемое посредством запуска этого противовоспалительного механизма, таких природных соединений, как кверцетин, катехины зеленого чая, экстракт виноградных косточек, куркумин и ресвератрол. Обладающие этим свойством соединения также содержатся во фруктах, овощах, орехах и цельном зерне.

Одним из наиболее активно изучаемых природных антиоксидантов является куркумин, придающий ярко-желтую окраску приправе карри. Разные группы исследователей изучают его способность стимулировать восстановление повреждений ДНК, в особенности эпигенетических нарушений, а также предотвращать развитие рака и повышать эффективность его лечения.
Еще одним многообещающим природным соединением является ресвератрол. Результаты исследований на животных свидетельствуют о том, что ограничение калорийности рациона при сохранении его питательной ценности сохраняет теломеры и увеличивает продолжительность жизни за счет активации гена sirtuin 1 (sirt1) и повышению синтеза белка сиртуина-1. Функция этого белка заключается в «настройке» систем организма на работу в «режиме экономии», что очень важно для выживания вида в условиях недостатка питательных веществ. Ресвератрол напрямую активирует ген sirt1, что положительно сказывается на состоянии теломер, в особенности в отсутствие переедания.

На сегодняшний день очевидно, что короткие теломеры являются отражением низкого уровня способности систем клетки к восстановлению повреждений ДНК, в том числе теломер, что соответствует повышенному риску развития рака и болезней сердечно-сосудистой системы. В рамках интересного исследования с участием 662 человек у участников с детского возраста до 38 лет регулярно оценивали содержание в крови липопротеинов высокой плотности (ЛПВП), известных как «хороший холестерин». Наиболее высокие уровни ЛПВП соответствовали наиболее длинным теломерам. Исследователи считают, что причина этого кроется в менее выраженном накоплении воспалительных и свободно-радикальных повреждений.

Резюме

Основной вывод из всего вышеперечисленного заключается в том, что человек должен вести образ жизни и соблюдать рацион питания, минимизирующие износ организма и предотвращающие повреждения, вызываемые свободными радикалами. Важным компонентом стратегии защиты теломер является употребление продуктов, подавляющих воспалительные процессы. Чем лучше состояние здоровья человека, тем меньше усилий он может предпринимать, и наоборот. Если вы здоровы, ваши теломеры будут укорачиваться в результате нормального процесса старения, поэтому для минимизации этого влияния вам достаточно по мере взросления (старения) увеличивать поддержку теломер с помощью пищевых добавок. Параллельно этому следует вести сбалансированный образ жизни и избегать видов деятельности и употребления веществ, оказывающих отрицательное влияние на здоровье и ускоряющих деградацию теломер.

Более того, при неблагоприятных стечениях обстоятельств, таких как несчастные случаи, заболевания или эмоциональные травмы, теломерам следует обеспечивать дополнительную поддержку. Затяжные состояния, такие как посттравматический стресс, чреваты укорочением теломер, поэтому очень важным условием для любого типа травмы или неблагоприятного воздействия является полное восстановление.

Теломеры отражают жизнеспособность организма, обеспечивающую его способность справляться с различными задачами и требованиями. При укорочении теломер и/или их функциональных нарушениях организму приходится прилагать бОльшие усилия для того, чтобы выполнять повседневные задачи. Такая ситуация приводит к накоплению в организме поврежденных молекул, что затрудняет процессы восстановления и ускоряет старение. Это является предпосылкой развития целого ряда заболеваний, указывающих на «слабые места» организма.

Состояние кожи является еще одним показателем статуса теломер, отражающим биологический возраст человека. В детстве клетки кожи делятся очень быстро, а с возрастом скорость их деления замедляется в стремлении сэкономить утрачивающие способность к восстановлению теломеры. Лучше всего биологический возраст оценивать по состоянию кожи предплечий рук.

Сохранение теломер является исключительно важным принципом сохранения здоровья и долголетия. Сейчас перед нами открывается новая эра, в которой наука демонстрирует все новые способы замедления старения с помощью продуктов питания. Никогда не поздно и не рано начать вносить в свой образ жизни и рацион питания изменения, которые направят вас в нужном направлении.

Евгения Рябцева
Портал «Вечная молодость» по материалам NewsWithViews.com:

Нашла самое главное, что я искала в тему теломер.
Напомним, что есть теломеры.

В результате исследований удалось доказать благотворное влияние на длину теломер следующих питательных веществ:

Витамин B12 Цинк Витамин D

Oмега-3 Витамин К Витамина E

Ниже будет представлен их анализ, а также даны несколько добавочных рекомендаций, относящихся к потреблению продуктов с высоким содержанием указанных веществ, способствующих удлинению теломер.
Естественно, что эффект от употребления представленных ниже продуктов, в силу особенностей каждого отдельно взятого человеческого организма, не может быть абсолютным для 100% населения. Однако в изложенном перечне представлены продукты, благотворный эффект которых на человеческий организм достаточно изучен и научно доказан.
В презентуемом ниже списке собраны 12 лучших питательных веществ, замедляющих процесс старения, в дополнение к которым приведены 2 основные стратегии, не предполагающие дополнительного потребления биодобавок и мультивитаминных комплексов. Все они способны радикально повлиять на жизнь каждого человека и защитить теломеры.

Перечень 12-ти питательных веществ изложен в порядке уменьшения важности оных.

Лично я ежедневно потребляю продукты из первых 6 пунктов плюс дополнительно повышаю содержание витамина D посредством принятия солнечных ванн.

Витамин D
В исследовании с участием более чем 2,000 представительниц слабого пола было установлено следующее: ДНК женщин с большим уровнем витамина D оказались менее подвержены старению. Также была доказана прямая зависимость длины теломер от концентрации в организме витамина D. Кроме того, исследователи не преминули отметить то обстоятельство, что женщины с большей концентрацией витамина D оказались более уравновешенными и менее раздражительными. Всё это, по мнению учёных, указывает на то, что люди с большим уровнем витамина D стареют медленнее по сравнению с людьми, «обделёнными» данным элементом.Длина теломер лейкоцитов (англ. LTL) - это лучший предсказатель болезней, ускоряющих наступление старости. Дело в том, что по мере старения организма LTL становится всё более короткой, а при хронических воспалениях уменьшение длины теломер происходит ещё быстрее. Причина этого кроется в ответе организма на воспалительные процессы путём увеличения объёма лейкоцитов. Уровень витамина D с возрастом также уменьшается, в то время как концентрация C-реактивного белка (C-reactive protein, сокр. CRP) при воспалении возрастает. Этот «двойной удар» увеличивает общий риск развития таких аутоиммунных заболеваний как рассеянный склероз, ревматоидный артрит и др.Витамин D, со своей стороны, является мощным ингибитором, замедляющим воспалительные процессы. Результатом этого является уменьшение объёма лейкоцитов и формирование положительной реакции в цепи, защищающей организм от множества болезней, и, как следствие, - от преждевременного старения.Учёные установили, что субпопуляции лейкоцитов (англ. lymphocyte subsets) располагают рецепторами для активной формы витамина D (D3), позволяющими витамину напрямую воздействовать на эти клетки. В частности, дефекты рецепторов витамина D способствуют развитию рахита и других аутоимунных болезней, тогда как физиологическая обеспеченность организма витамином D увеличивает противораковый иммунитет (посредством уменьшения выживаемости раковых клеток). Данный эффект «привязан» к иммуномодулирующей активности рецептора витамина D и его производных (агонистов). Эти данные фундаментальных исследований в области клеточной биологии подтверждены доказательной медициной.
Солнечные ванны являются самым благоприятным способом оптимизации уровня витамина D в организме. Я в полной мере осознаю, что у многих современных людей отсутствует возможность регулярно загорать, но с моей стороны было бы непростительной небрежностью не акцентировать внимание на том, что получение витамина D от солнца в разы предпочтительнее насыщения организма витамином D путём приёма различных пищевых добавок.
Астаксантин (производная микроводорослей Pluvialis Haematoccous)
В исследовании об использовании мультивитаминов, проведённом в 2009 году, была выявлена взаимосвязь между длиной теломер и использованием антиоксидантных формул. Согласно авторам, теломеры особенно уязвимы перед окислительным (оксидативным) стрессом (англ. oxidative stress). Кроме того, наличие в организме воспалительных процессов существенно увеличивает степень повреждения клеток под воздействием оксидативного стресса и приводит к уменьшению активности теломеразы - фермента, ответственного за поддержание длины теломер.Астаксантин - один из самых мощных антиоксидантов с сильными противовоспалительными свойствами и способностями к защите ДНК. Исследование доказало, что это вещество обеспечивает надёжную защиту ДНК даже от радиации, вызываемой смертоносным гамма-излучением. Антаксантин обладает рядом уникальных характеристик, отсутствующих у прочих антиоксидантов.В частности, астаксантин мощнее всех известных антиоксидантов-каротиноидов по части уничтожения свободных радикалов: он в 65 раз мощнее витамина C, в 54 раза эффективнее бета-каротина и в 14 раз сильнее витамина E VI. Кроме того, эффективность астаксантина в «тушении» синглетного кислорода (англ. singlet oxygen) в 550 раз превышает возможности витамина Е и в 11 раз - эффективность бета-каротина в нейтрализации данной разновидности окисления.Астаксантин способен преодолевать гемато-энцефалический (между кровеносной и центральной нервной системами) и гемато-ретинальный (сетчатки) барьеры, благодаря чему обеспечивается противовоспалительная и антиоксидантная защита глаз, мозга и центральной нервной системы.
Еще одной особенностью, отличающей астаксантин от других каротиноидов, является его неспособность функционировать в качестве про-окислителя (рro-oxidant). Другие антиоксиданты в случае повышенной концентрации в тканях могут выступать в качестве про-окислителей (т.е вызывать ещё большее окисление). Именно по этой причине не рекомендуется употреблять слишком много антиоксидантов (вроде бета-каротина). Астаксантин, со своей стороны, даже при значительной концентрации в организме, не способен выступать в качестве про-оксиданта, что делает его чрезвычайно полезным.
И, наконец, едва ли не главным его свойством является уникальная способность защищать клетку целиком (в отличие от других антиоксидантов, обеспечивающих защиту лишь отдельных частей клетки). Эта особенность проистекает из физических характеристик астаксантина, позволяющих ему находиться внутри клеточной мембраны, защищая также внутреннюю часть клетки.
Убихинон (CoQ10)
Коензима Q10 (CoQ10) - пятая по популярности биодобавка в Соединенных Штатах, которую предпочитают 53% американцев (данные опроса 2010 г., проведённого ConsumerLab.com). Согласно статистическим данным, каждый четвёртый американец старше 45 лет принимает статины (англ. statins или HMG-CoA reductase inhibitors) - лекарства, тормозящие в печени биосинтез холестерина, в дополнение к которым необходимо принимать эту коэнзиму.CoQ10 используется каждой клеткой человеческого тела, именно поэтому название данного элемента («ubiquinone») переводится как «присутствующий везде» или «вездесущный» (англ. omnipresent).Для того, чтобы питательные вещества для производства клеточной энергии и уменьшения основных признаков старения приносили должный эффект, человеческий организм должен преобразовать убихинон в редуцированную форму, которая называется убихинол (ubiquinol).Человеческий организм до 25-летнего возраста способен превращать окисленную форму CoQ10 в редуцированную, однако с возрастом эта способность постепенно уменьшается. Преждевременное старение является главным побочным эффектом, демонстрирующим уменьшение количества CoQ10 - витамина, перерабатывающего антиоксиданты подобно витаминам C и E. Кроме того, недостаток CoQ10 наносит значительный ущерб ДНК. В свете того, что коэнзима Q10 оказывает благотворный эффект на здоровье сердца и мускульные функции, её истощение приводит к быстрой утомляемости, мускульной слабости, болям и сердечной недостаточности.
Д-р Стефан Синатра (Stephen Sinatra) в одном из интервью рассказывал об эксперименте, проведённом в середине 1990-х годов на крысах преклонного возраста (в среднем эти грызуны живут 2 года). Животные, получавшие CoQ10 в конце жизни, были более энергичными и отличались повышенным аппетитом по сравнению со своими сородичами, лишёнными CoQ10. Исходя из результатов данного эксперимента, учёные пришли к выводу, что эта коэнзима обладает мощным эффектом анти-старения в том смысле, что позволяет поддерживать молодость до конца жизни. Однако в контексте увеличения продолжительности жизни эффект от приёма CoQ10 является незначительным.
Др. Синатра позднее провёл собственное исследование, по результатам которого констатировал приток энергии и сил как у молодых, так и у старых мышей, в пищу которых добавляли CoQ10. Самые старые мыши проходили через лабиринты быстрее, отличались лучшей памятью и большей двигательной активностью по сравнению со своими ровесниками, не получавшими CoQ10.
Всё это может свидетельствовать в пользу того, что коэнзима Q10 существенно улучшает качество жизни и минимально увеличивает её продолжительность.
Кисломолочные продукты / пробиотики
Общеизвестно, что потребление в пищу значительного количества обработанных химикатами продуктов питания отрицательно сказывается на продолжительности жизни. Несмотря на это, 90% денег, потраченных американцами на еду, приходятся именно на эти продукты. Все они - от замороженной еды до приправ и аперитивов - содержат кукурузный сироп с высоким содержанием фруктозы, являющийся главным источником калорий в США. Учёным удалось доказать прямое влияние обработанных продуктов на появление у будущих поколений значительных генетических изменений (вплоть до серьёзных мутаций), однако даже этот факт не останавливает американцев.Основная проблема состоит в том, что «перегруженные» химией и искусственными подсластителями продукты активно разрушают кишечную микрофлору, ответственную за защиту иммунной системы. Антибиотики, стресс, вода с содержанием хлора, искусственные подсластители и прочие негативные факторы приводят к уменьшению количества пробиотиков (полезных бактерий) в кишечнике, что способствует преждевременному старению и возникновению болезней.Источниками пробиотиков могут служить как ферментированные продукты, так и биодобавки. Первый вариант является более предпочтительным, поскольку ферментированная пища (особенно овощи) содержит значительно больше (вплоть до 100 раз) полезных бактерий.
Масло криля
По мнению д-ра Ричарда Харриса (Richard Harris), люди, у которых показатель жирных кислот омега-3 составляет менее 4%, стареют значительно быстрее тех, у кого указанный показатель превышает 8 процентов. Следовательно, количество omega-3 также влияет на процесс старения.Исследования д-ра Харриса (главного специалиста США по части omega-3) показали, что данные жиры непосредственно влияют на активизацию теломеразы, которая, повторим, способна предотвращать укорачивание теломер.Хотя исследование, о котором идёт речь, является предварительным, я позволю себе предположить, что увеличение жирных кислот омега-3 до более чем 8-процентного уровня является прекрасной стратегией для замедления процесса старения (измерением уровня жирных кислот омега-3 в США занимается Лаборатория диагностики здоровья (Health Diagnostic Laboratory) в г. Ричмонд, штат Вирджиния.Главным источником жирных кислот омега-3 является масло криля, обладающее серией значительных преимуществ перед другими источниками омега-3 (такими как жир холодноводных морских рыб). Кроме того, добавки на основе рыбьего жира несут в себе высокий риск окисления (прогоркания) жира. Д-р. Руди Моерк (Rudi Moerck) указывал на этот нюанс в одном из интервью.
Масло криля также содержит астаксантин натурального происхождения, благодаря чему оно почти в 200 раз устойчивее к окислению, нежели рыбий жир.
В соответствии с исследованием д-ра Харриса, содержание омега-3 в грамме масла криля на 25-50% превышает аналогичный показатель в рыбьем жире. И, наконец, масло криля значительно быстрее абсорбируется организмом.
Витамин K
Витамин K является почти таким же важным, как и витамин D, гласят результаты последних исследований. Несмотря на то, что большинство людей получает достаточное количество витамина K из повседневного рациона, этого недостаточно для поддержания адекватного уровня свертываемости крови и защиты от возможных проблем со здоровьем.В частности, исследования последних лет доказали способность витамина К2 противодействовать появлению рака простаты - главного ракового заболевания среди мужского населения США. В результате изучения данного витамина также удалось установить его преимущества по части улучшения «сердечного» здоровья.Благотворный эффект витамина К2 был впервые доказан в 2004 году (исследование в Роттердаме). В результате последующих опытов удалось установить, что люди, потребляющие 45 микрограмм (мкг) витамина K2 ежедневно, живут в среднем на 7 лет дольше по сравнению с теми, чья дневная норма К2 не превышает 12 мкг.В ходе ещё одного исследования (Prospect Stud), специалисты наблюдали 16.000 добровольцев в течение 10 лет. В результате учёные обнаружили, что дополнительные 10 мкг витамина K2 в ежедневном рационе снижают риск возникновения сердечно-сосудистых заболеваний на 9 процентов.
Витамин K2 присутствует в кисломолочных продуктах (особенно в сыре) и японской натто - пище, являющейся настоящим кладезем K2.
Магний
По данным исследования, опубликованного в октябрьском номере «Journal of Nutritional» за 2011г., магний также играет одну из ключевых ролей в репликации ДНК и синтезе РНК; «пищевой» магний, со своей стороны, оказал положительное влияние на увеличение длины теломер у женщин.Другие исследования показали, что долгосрочный дефицит этого элемента приводит к укорочению теломер в клетках крыс. Это даёт основание полагать, что отсутствие ионов магния оказывают негативное воздействие на целостность генома. Кроме того, дефицит магния может привести к негативным изменениям в хромосомах и снизить способности организма восстанавливать поврежденные ДНК.Авторы эксперимента пришли к следующему заключению: «гипотеза о том, что … магний влияет на длину теломер, является полностью обоснованной, поскольку магний обеспечивает целостность и исправляет дефекты ДНК, а также способен эффективно противостоять оксидативному стрессу и воспалительным процессам.»
Полифенолы
Полифенолы - это мощные антиоксиданты, содержащиеся в продуктах питания растительного происхождения, многие из которых способны замедлять процесс старения и противостоять некоторым заболеваниям. Ниже приведён перечень продуктов с самыми сильными антиоксидантными свойствами.

Виноград (Resveratrol).

Две дополнительные стратегии здорового образа жизни, влияющие на длину теломер.

Правильное питание «ответственно» примерно за 80% благ, проистекающих от здорового образа жизни (одной из составных частей которого являются голодание). Остальные 20% приходится на физические упражнения, которые также препятствуют сокращению длины теломер.

Физические упражнения.

Недавнее исследование (PLoS One, май 2010) женщин, страдающих от хронического стресса в период постменопаузы, показало, что «энергичная физическая активность … защищает людей, находящихся в состоянии стресса, оказывая влияние на длину теломер (TL)». Это значит, что у женщин, игнорирующих физические упражнения, повышение уровня стресса на 1 пункт увеличивает вероятность сокращения длины теломер на 15% (изменение уровня стресса проводится по Шкале восприятия стресса PSS-10 (англ. PERCEIVED STRESS SCALE). В то же время стрессовое состояние у физически активных женщин никак не отразилось на длине теломер.Высокая интенсивность физических упражнений оказалась весьма действенным инструментом уменьшения сокращения длины теломер и, как следствие, - замедления процесса старения.

Грета Блэкберн (Greta Blackburn) в своей книге «Возраст бессмертия…» («The Immortality Edge: Realize the Secrets of Your Telomeres for a Longer, Healthier Life») представила подробный отчёт о том, как физические упражнения высокой интенсивности препятствуют сокращению длины теломер.

Периодическое голодание

Предыдущие исследования показали, что возможность продления жизни за счет снижения потребления калорий действительно существует. Проблема состоит в том, что большинство людей не понимает, как правильно нужно голодать (ведь для того, чтобы оставаться здоровым, следует сокращать лишь некоторые виды калорий - углеводы).

Исследование, проведённое профессором Синтией Кенйон (Cynthia Jane Kenyon), доказало, что уменьшение количества углеводов приводит к активизации генов, управляющих молодостью и долголетием.

Одним из самых действенных способов ограничения таких калорий является периодическое голодание (в частности, прекращение потребления сахара и зерновых).

Изучение процессов старения организма человека всегда занимало умы ученых. И сегодня многие исследователи пытаются до конца разгадать этот механизм, заключающийся в развитии и постепенном увядании клеток тела человека. Возможно, что ответы на эти вопросы помогут медикам увеличивать продолжительность жизни и улучшать ее качество при различных заболеваниях.

Сейчас существует несколько теорий о старении клетки. В этой статье мы рассмотрим одну из них. Она основана на изучении таких частей хромосом, заключающих в себе около 90 % ДНК клетки, как теломеры.

Что такое «теломеры»?

В каждом ядре клетки находится по 23 пары хромосом, представляющих собой Х-образно закрученные спирали, на концах которых находятся теломеры. Эти звенья хромосомы можно сравнить с наконечниками шнурков для обуви. Они выполняют такие же защитные функции и сохраняют целостность ДНК и генов.

Деление любой клетки всегда сопровождается раздвоением ДНК, т. к. материнская клетка должна передать информацию дочерней. Этот процесс всегда вызывает укорачивание ДНК, но клетка при этом не теряет генетическую информацию, т. к. на концах хромосом расположены теломеры. Именно они во время деления становятся короче, предохраняя клетку от утраты генетической информации.

Клетки делятся многократно и с каждым процессом их размножения теломеры укорачиваются. При наступлении критически маленького размера, который называется «предел Хейфлика», срабатывает запрограммированный механизм смерти клетки – апоптоз. Иногда – при мутациях – в клетке запускается другая реакция - программа, приводящая к бесконечному делению клетки. Впоследствии такие клетки становятся раковыми.

Пока человек молод, клетки его тела активно размножаются, но с уменьшением размеров теломер происходит и старение клетки. Она начинает с трудом выполнять свои функции, и организм начинает стареть. Из этого можно сделать такой вывод: именно длина теломер является самым точным индикатором не хронологического, а биологического возраста организма.

Краткая информация о теломерах:

  • они не несут генетической информации;
  • в каждой клетке человеческого организма заключено 92 теломеры;
  • они обеспечивают стабильность генома;
  • они защищают клетки от смерти, старения и мутаций;
  • они защищают структуру конечных участков хромосом при делении клетки.

Возможно ли защитить или удлинить теломеры и продлить жизнь?

В 1998 году американские исследователи смогли преодолеть предел Хейфлика. Значение максимального укорочения теломер различно для разных типов клеток и организмов. Предел Хейфлика для большинства клеток человеческого организма составляет 52 деления. Увеличить это значение в процессе экспериментов стало возможным путем активации такого особого фермента, воздействующего на ДНК, как теломераза.

В 2009 году ученые из Стэнфордского университета были удостоены Нобелевской премии за разработку метода стимуляции теломер. Эта методика основана на применении особой молекулы РНК, несущей в себе ген TERT (обратной теломеразной транскриптазы). Она является матрицей для удлинения теломер и распадается после выполнения своей функции. Полученные клетки «омолаживаются» и начинают делиться более интенсивно, чем ранее. При этом их малигнизация, то есть превращение в злокачественные, не наступает.

Благодаря этому открытию стало возможным удлинять концы хромосом более чем на 1000 нуклеотидов (структурных единиц ДНК). Если пересчитать этот показатель на годы жизни человека, то он составит несколько лет. Такой процесс воздействия на теломеры абсолютно безопасен и не вызывает мутаций, приводящих к бесконтрольному делению и малигнизации клеток. Это объясняется тем фактом, что после введения особая молекула РНК быстро распадается и иммунитет не успевает реагировать на нее.

Ученые сделали выводы о том, что теломераза:

  • защищает клетки от старения;
  • продлевает жизнь клетки;
  • предупреждает уменьшение длины теломер;
  • создает матрицу для «достраивания» теломер;
  • омолаживает клетки, возвращая их к молодому фенотипу.

Пока научные эксперименты, проводящиеся на основе теории ученых из Стэнфордского университета, выполнялись только на лабораторных мышах. В их итоге специалисты смогли затормозить старение кожи животных.

За это открытие работающая в США австралийка Элизабет Блекберн, американка Кэрол Грейдер и ее соотечественник Джек Шостак были удостоены Нобелевской премии. Ученые из Стэнфорда надеются, что созданная ими методика даст возможность в будущем лечить тяжелые заболевания (в том числе и нейродегенеративные), которые провоцируются укорочением теломер.

Питер Лэндсдорп, научный директор Европейского института биологии возраста рассказывает о роли теломер в процессах старения и образования опухолей: