Как рассчитать вращательный момент. Момент силы: правило и применение

Моментом силы относительно оси вращения называется физическая величина, равная про­изведению силы на ее плечо.

Момент силы определяют по формуле:

М - FI , где F - сила, I - плечо силы.

Плечом силы называется кратчайшее расстояние от линии действия силы до оси вращения тела.


На рис. 1.33, а изображено твердое тело, способное вращаться вокруг оси. Ось вращения этого тела перпендикулярна плоскости рисунка и проходит через точку, обозначенную буквой О. Пле­чом силы F здесь является расстояние 1Хот оси вращения до линии действия силы. Находят его следующим образом. Сначала проводят линию действия силы. Затем из точки О, через которую проходит ось вращения тела, опускают на линию действия силы перпендикуляр. Длина этого перпендикуляра является плечом данной силы.

Момент силы характеризует вращающее действие силы. Это действие зависит как от силы, так и от плеча. Чем больше плечо, тем меньшую силу надо приложить, чтобы получить желаемый результат, т. е. один и тот же момент силы (см. (1.33)). Именно поэтому открыть дверь, толкая ее возле петель, гораздо труднее, чем берясь за ручку, а гайку отвернуть гораздо проще длинным, чем коротким гаечным ключом.

За единицу момента силы в СИ принимается момент силы в 1 Н, плечо которой равно 1м - ньютон-метр (Н м).

Правило моментов

Твердое тело, способное вращаться вокруг неподвижной оси, находится в равновесии, если момент силы М, вращающей его по часовой стрелке, равен моменту силы М2, вращающей его против часовой стрелки:

М1 = -М2 или F 1 ll = - F 2 l 2 .

Правило моментов является следствием одной из теорем механики, сформулированной фран­цузским ученым П. Вариньоном в 1687 г.

Если на тело действуют две равные и противоположно направленные силы, не лежащие на одной прямой, то такое тело не находится в равновесии, поскольку результирующий момент этих сил относительно любой оси не равен нулю, т. к. обе силы имеют моменты, направленные в одну сторону. Две такие силы, одновременно действующие на тело, называют парой сил. Если тело закреплено на оси, то под действием пары сил оно будет вращаться. Если пара сил приложена ксвободному телу, то оно будет вращаться вокруг оси, проходящей через центр тяжести тела, рис. 1.33, б.

Момент пары сил одинаков относительно любой оси, перпендикулярной к плоскости пары. Суммарный момент М пары всегда равен произведению одной из сил F на расстояние I между силами, которое называется плечом пары,независимо от того, на какие отрезки и /2 разделяет положение оси плечо пары:

M = Fll + Fl2=F(l1 + l2) = Fl.

Момент нескольких сил, равнодействующая которых равна нулю, будет одинаковым относи­тельно всех осей, параллельных друг другу, поэтому действие всех этих сил на тело можно заме­нить действием одной пары сил с тем же моментом.

Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.

Что такое инерция

Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.

Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции» .

Определение момента инерции

Из школьного курса известно, что масса – мера инертности тела . Если мы толкнем две тележки разной массы, то остановить сложнее будет ту, которая тяжелее. То есть чем больше масса, тем большее внешнее воздействие необходимо, чтобы изменить движение тела. Рассмотренное относится к поступательному движению, когда тележка из примера движется по прямой.

По аналогии с массой и поступательным движением момент инерции – это мера инертности тела при вращательном движении вокруг оси.

Момент инерции – скалярная физическая величина, мера инертности тела при вращении вокруг оси. Обозначается буквой J и в системе СИ измеряется в килограммах, умноженных на квадратный метр.

Как посчитать момент инерции? Есть общая формула, по которой в физике вычисляется момент инерции любого тела. Если тело разбить на бесконечно малые кусочки массой dm , то момент инерции будет равен сумме произведений этих элементарных масс на квадрат расстояния до оси вращения.

Это общая формула для момента инерции в физике. Для материальной точки массы m , вращающейся вокруг оси на расстоянии r от нее, данная формула принимает вид:

Теорема Штейнера

От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.

Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.

Кстати! Для наших читателей сейчас действует скидка 10% на

Теорема Гюйгенса-Штейнера гласит:

Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:


Пример решения задачи на нахождение момента инерции

Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.

Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.

Решение:

Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от 0 до R и рассмотрим одно такое кольцо. Пусть его радиус – r , а масса – dm . Тогда момент инерции кольца:

Массу кольца можно представить в виде:

Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:

В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.

Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.

Решение:

Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:

Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и .

Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе . Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.

Момент силы. Момент импульса.

Пусть некоторое тело под действием силы F, приложенной в точке А, приходит во вращение вокруг оси ОО" (рис. 1.14).

Сила действует в плоскости, перпендикулярной оси. Перпендикуляр р, опущенный из точки О (лежащей на оси) на направление силы, называют плечом силы . Произведение силы на плечо определяет модуль мо­мента силы относительно точки О:

М = Fp=Frsinα.

Момент силы есть вектор, определяемый векторным произведением радиуса-вектора точки приложения силы и вектора силы:

(3.1)
Единица момента силы - ньютон-метр (Н м).

Направление М можно найти с помощью правила правого винта.

Моментом импульса частицы называется векторное произведение радиус-вектора частицы на её импульс:

или в скалярном виде L = гPsinα

Эта величины векторная и совпадает по направлению с векторами ω.

§ 3.2 Момент инерции. Теорема Штейнера

Мерой инертности тел при поступательном движении является масса. Инертность тел при вращательном движении зависит не только от массы, но и от ее распределения в пространстве относительно оси вращения. Мерой инертности при вращательном движении служит величина, назы­ваемая моментом инерции тела относительно оси вращения.

Моментом инерции материальной точки относительно оси враще­ния называют произведение массы этой точки на квадрат расстояния её от оси:

I i =m i r i 2 (3.2)

Момент инерции тела относительно оси вращения называют сумму мо­ментов инерции материальных точек, из которых состоит это тело:

(3.3)

Момент инерции тела зависит от того, относительно какой оси оно вращается и как распределена масса тела по объему.

Наиболее просто определяется момент инерции тел, имеющих правильную геометрическую форму и равномерное распределение массы по объему.

· Момент инерции однородного стержня относительно оси, проходящей через центр инерции и перпендикулярной стержню

(3.6)

· Момент инерции однородного цилиндра относительно оси, перпен­дикулярной его основанию и проходящей через центр инерции,

(3.7)

· Момент инерции тонкостенного цилиндра или обруча относительно оси, перпендикулярной плоскости его основания и проходящей через его центр,

(3.8)

· Момент инерции шара относительно диаметра

(3.9)

Рис.3.2

Приведенные формулы для моментов инерции тел даны при условии, что ось вращения проходит через центр инерции. Чтобы определить моменты инерции тела относительно произвольной оси, следует воспользоваться теоремой Штейнера : момент инерции тела относительно произвольной оси вращения равен сумме момента инерции тела относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями:

(3.11)

Единица момента инерции - килограмм-метр в квадрате (кг м 2).

Так, момент инерции однородного стержня относительно оси, проходящей через его конец, по теореме Штейнера равен

(3.12)

§ 3.3 Уравнение динамики вращательного движения твердого тела

Рассмотрим вначале материальную точку А массой m, движущуюся по окружности радиусом г (рис. 1.16). Пусть на нее действует постоянная сила F, направленная по касательной к окружности. Согласно второму закону Ньютона, эта сила вызывает тангенциальное ускорение или F = ma τ .

Используя соотношение a τ = βr , получаем F = m βr.

Умножим обе части написанного выше равенства на r.

Fr = m βr 2 . (3.13)

Левая часть выражения (3.13) является моментом силы: М= Fr. Правая часть представляет собой произведение углового ускорения β на момент инерции материальной точки А: J= m r 2 .

Угловое ускорение точки при ее вращении вокруг неподвижной оси пропорционально вращающему моменту и обратно пропорционально моменту инерции (основное уравнение динамики вращательного движения материальной точки ):

М = β J или (3.14)

При постоянном моменте вращающей силы угловое ускорение будет величиной постоянной и его можно выразить через разность угловых скоростей:

(3.15)

Тогда основное уравнение динамики вращательного движения можно записать в виде

или (3.16)

[ -момент импульса (или момент количества движения), МΔt - импульс момента сил (или импульс вращающего момента)].

Основное уравнение динамики вращательного движения можно записать в виде

(3.17)

§ 3.4 Закон сохранения момента импульса

Рассмотрим частый случай вращательного движения, когда суммарный момент внешних сил равен нулю. При вращательном движении тела каждая его частица движется с линейной скоростью υ = ωr, .

Момент импульса вращающегося тела равен сумме моментов

импульсов отдельных его частиц :

(3.18)

Изменение момента импульса равно импульсу момента сил:

dL=d(Jω)=Jdω=Mdt (3.19)

Если суммарный момент всех внешних сил, действующих на систему тела относительно произвольной неподвижной оси, равен нулю, т.е. М=0, то dL и векторная сумма моментов импульсов тел системы не изменяется с течением времени.

Сумма моментов импульсов всех тел изолированной системы сохраняется неизменной (закон сохранения момента импульса ):

d(Jω)=0 Jω=const (3.20)

Согласно закону сохранения момента импульса можно записать

J 1 ω 1 = J 2 ω 2 (3.21)

где J 1 и ω 1 - момент инерции и угловая скорость в начальный момент времени, а и J 2 и ω 2 – в момент времени t.

Из закона сохранения момента импульса следует, что при М=0 в процессе вращения системы вокруг оси любое изменение расстояния от тел до оси вращения должно сопровождаться изменением скорости их обращения вокруг этой оси. С увеличением расстояния скорость вращения уменьшается, с уменьшением – возрастает. Например, гимнаст, совершающий сальто, чтобы успеть сделать в воздухе несколько оборотов, во время прыжка свёртывается клубком. Балерина или фигуристка, кружась в пируэте, разводит руки если хочет замедлить вращение, и, наоборот, прижимает их к телу, когда старается вращаться как можно быстрее.

§ 3.5 Кинетическая энергия вращающегося тела

Определим кинетическую энергию твёрдого тела, вращающегося вокруг неподвижной оси. Разобьем это тело на n материальных точек. Каждая точка движется с линейной скоростью υ i =ωr i , тогда кинетическая энергия точки

или

Полная кинетическая энергия вращающегося твердого тела равна сумме кинетических энергий всех его материальных точек:

(3.22)

(J - момент инерции тела относительно оси вращения)

Если траектории всех точек лежат в параллельных плоскостях (как у цилиндра, скатывающегося с наклонной плоскости, каждая точка перемещается в своей плоскости рис), это плоское движение . В соответствии с принципом Эйлера плоское движение всегда можно бесчисленным количеством способов разложить на поступательное и вращательное движение. Если шарик падает или скользит вдоль наклонной плоскости, он двигается только поступательно; когда же шарик катится – он ещё и вращается.

Если тело совершает поступательное и вращательное движения одновременно, то его полная кинетическая энергия равна

(3.23)

Из сопоставления формул кинетической энергии для поступательно­го и вращательного движений видно, что мерой инертности при враща­тельном движении служит момент инерции тела.

§ 3.6 Работа внешних сил при вращении твёрдого тела

При вращении твёрдого тела его потенциальная энергия не изменяется, поэтому элементарная работа внешних сил равна приращению кинетической энергии тела:

ΔA = ΔE или

Учитывая, что Jβ = M, ωdr = dφ, имеем

ΔA =MΔφ (3.24)

Работа внешних сил при повороте твёрдого тела на конечный угол φ равна

При вращении твёрдого тела вокруг неподвижной оси работа внешних сил определяется действием момента этих сил относительно данной оси. Если момент сил относительно оси равен нулю, то эти силы работы не производят.

Моментом силы относительно оси называется момент проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с этой плоскостью

Момент относительно оси положителен, если сила стремится вращать плоскость перпендикулярную оси против часовой стрелки, если смотреть навстречу оси.

Момент силы относительно оси равен 0 в двух случаях:

    Если сила параллельна оси

    Если сила пересекает ось

Если линия действия и ось лежат в одной плоскости, то момент силы относительно оси равен 0.

27. Связь между моментом силы относительно оси и векторным моментом силы относительно точки.

Mz(F)=Mo(F)*cosαМомент силы, относительно оси равен прекции вектора момента сил, относительно точки оси на эту ось.

28. Основная теорема статики о приведении системы сил к заданному центру (теорема Пуансо). Главный вектор и главный момент системы сил.

Всякую пространственную систему сил в общем случае можно заменить эквивалентной системой, состоящей из одной силы, прило­женной в какой-либо точке тела (центре приведения) и равной глав­ному вектору данной системы сил, и одной пары сил, момент которой равен главному моменту всех сил относительно выбранного центра приведения.

Главным вектором системы сил называется вектор R , равный векторной сумме этих сил:

R = F 1 + F 2 + ... + F n = F i .

Для плоской системы сил ее главный вектор лежит в плоскости действия этих сил.

Главным моментом системы сил относительно центра O называется вектор L O , равный сумме векторных моментов этих сил относительно точки О:

L O = M O (F 1) + M O (F 2) + ... + M O (F n) = M O (F i).

Вектор R не зависит от выбора центра О, а вектор L O при изменении положения центра О может в общем случае изменяться.

Теорема Пуансо: Произвольную пространственную систему сил можно заменить одной силой главным вектором системы сил и парой сил с главным моментом не нарушая состояния твердого тела. Главный вектор представляет собой геометрическую сумму всех сил действующих на твердое тело и расположен в плоскости действия сил. Главный вектор рассматривается через его проекции на оси координат.

Чтобы привести силы к заданному центру приложенному в некоторой точке твердого тела необходимо: 1) перенести параллельно силу самой себе к заданному центру не изменяя модуля силы; 2) в заданном центре приложить пару сил, векторный момент которой равен векторному моменту перенесенной силы относительного нового центра, эту пару называют присоединенной парой.

Зависимость главного момента от выбора центра приведения. Главный момент относительно нового центра приведения равен геометрической сумме главного момента относительно старого центра приведения и векторного произведения радиуса-вектора, соединяющего новый центр приведения со старым, на главный вектор.

29 Частные случаи приведения пространственной системы сил

Значения главного вектора и главного момента

Результат приведения

Система сил приводится к паре сил, момент которой равен главному моменту (главный момент системы сил не зависит от выбора центра приведения О).

Система сил приводится к равнодействующей, равной , проходящей через центр О.

Система сил приводится к равнодействующей , равной главному векторуи параллельной ему и отстоит от него на расстоянии. Положение линии действия равнодействующей должно быть таким, чтобы направление ее момента относительно центра приведения О совпадало с направлениемотносительно центра О.

, причем векторы ине перпендикулярны

Система сил приводится к динаме (силовому винту) – совокупности силы и пары сил, лежащей в плоскости, перпендикулярной к этой силе.

Система сил, приложенных к твердому телу, является уравновешивающейся.

30. Приведение к динаме. Динамой в механике называют такую совокупность силыи пары сил () действующих на твердое тело, у которой сила перпендикулярна плоскости действия пары сил. Используя векторный моментпары сил, можно также определить динаму как совокупность силы и пары, у которы сила параллельна векторному моменту пары сил.

Уравнение центральной винтовой оси Предположим, что в центре приведения, принятом за начало координат, получены главный вектор с проекциями на оси координат и главный момент с проекциями При приведении системы сил к центру приведения О 1 (рис. 30) получается динама с главным вектором и главным моментом , Векторы и как образующие линаму. параллельны и поэтому могут отличаться только скалярным множителем k 0. Имеем, так как .Главные моменты и , удовлетворяют соотношению

Самое лучшее определение вращательного момента – это тенденция силы вращать предмет вокруг оси, точки опоры или точки вращения. Вращательный момент можно рассчитать с помощью силы и плеча момента (перпендикулярное расстояние от оси до линии действия силы), или используя момент инерции и угловое ускорение.

Шаги

Использование силы и плеча момента

  1. Определите силы, действующие на тело и соответствующие им моменты. Если сила не перпендикулярна рассматриваемому плечу момента (т.е. она действует под углом), то вам может понадобиться найти ее составляющие с использованием тригонометрических функций, таких как синус или косинус.

    • Рассматриваемая составляющая силы будет зависеть от эквивалента перпендикулярной силы.
    • Представьте себе горизонтальный стержень, к которому нужно приложить силу 10 Н под углом 30° над горизонтальной плоскостью, чтобы вращать его вокруг центра.
    • Поскольку вам нужно использовать силу, не перпендикулярную плечу момента, то для вращения стержня вам необходима вертикальная составляющая силы.
    • Следовательно, нужно рассматривать y-составляющую, или использовать F = 10sin30° Н.
  2. Воспользуйтесь уравнением момента, τ = Fr, и просто замените переменные заданными или полученными данными.

    • Простой пример: Представьте себе ребенка массой 30 кг, сидящего на одном конце качели-доски. Длина одной стороны качели составляет 1,5 м.
    • Поскольку ось вращения качели находится в центре, вам не нужно умножать длину.
    • Вам необходимо определить силу, прилагаемую ребенком, с помощью массы и ускорения.
    • Поскольку дана масса, вам нужно умножить ее на ускорение свободного падения, g, равное 9,81 м/с 2 . Следовательно:
    • Теперь у вас есть все необходимые данные для использования уравнения момента:
  3. Воспользуйтесь знаками (плюс или минус), чтобы показать направление момента. Если сила вращает тело по часовой стрелке, то момент отрицательный. Если же сила вращает тело против часовой стрелки, то момент положительный.

    • В случае нескольких приложенных сил, просто сложите все моменты в теле.
    • Поскольку каждая сила стремится вызвать различные направления вращения, важно использовать знак поворота для того, чтобы следить за направлением действия каждой силы.
    • Например, к ободу колеса, имеющего диаметр 0,050 м, были приложены две силы, F 1 = 10,0 Н, направленная по часовой стрелке, и F 2 = 9,0 Н, направленная против часовой стрелки.
    • Поскольку данное тело – круг, фиксированная ось является его центром. Вам нужно разделить диаметр и получить радиус. Размер радиуса будет служить плечом момента. Следовательно, радиус равен 0,025 м.
    • Для ясности мы можем решить отдельные уравнения для каждого из моментов, возникающих от соответствующей силы.
    • Для силы 1 действие направлено по часовой стрелке, следовательно, создаваемый ею момент отрицательный:
    • Для силы 2 действие направлено против часовой стрелки, следовательно, создаваемый ею момент положительный:
    • Теперь мы можем сложить все моменты, чтобы получить результирующий вращательный момент:

    Использование момента инерции и углового ускорения

    1. Чтобы начать решать задачу, разберитесь в том, как действует момент инерции тела. Момент инерции тела – это сопротивление тела вращательному движению. Момент инерции зависит как от массы, так и от характера ее распределения.

      • Чтобы четко понимать это, представьте себе два цилиндра одинакового диаметра, но разной массы.
      • Представьте себе, что вам нужно повернуть оба цилиндра вокруг их центральной оси.
      • Очевидно, что цилиндр с большей массой будет сложнее повернуть, чем другой цилиндр, поскольку он “тяжелее”.
      • А теперь представьте себе два цилиндра различных диаметров, но одинаковой массы. Чтобы выглядеть цилиндрическими и иметь разную массу, но в то же время иметь разные диаметры, форма, или распределение массы обоих цилиндров должна отличаться.
      • Цилиндр с большим диаметром будет выглядеть как плоская закругленная пластина, тогда как меньший цилиндр будет выглядеть как цельная трубка из ткани.
      • Цилиндр с большим диаметром будет сложнее вращать, поскольку вам нужно приложить большую силу, чтобы преодолеть более длинное плечо момента.
    2. Выберите уравнение, которое вы будете использовать для расчета момента инерции. Есть несколько уравнений, которые можно использовать для этого.

      • Первое уравнение – самое простое: суммирование масс и плечей моментов всех частиц.
      • Это уравнение используется для материальных точек, или частиц. Идеальная частица – это тело, имеющее массу, но не занимающее пространства.
      • Другими словами, единственной значимой характеристикой этого тела является масса; вам не нужно знать его размер, форму или строение.
      • Идея материальной частицы широко используется в физике с целью упрощения расчетов и использования идеальных и теоретических схем.
      • Теперь представьте себе объект вроде полого цилиндра или сплошной равномерной сферы. Эти предметы имеют четкую и определенную форму, размер и строение.
      • Следовательно, вы не можете рассматривать их как материальную точку.
      • К счастью, можно использовать формулы, применимые к некоторым распространенным объектам:
    3. Найдите момент инерции. Чтобы начать рассчитывать вращательный момент, нужно найти момент инерции. Воспользуйтесь следующим примером как руководством:

      • Два небольших “груза” массой 5,0 кг и 7,0 кг установлены на расстоянии 4,0 м друг от друга на легком стержне (массой которого можно пренебречь). Ось вращения находится в середине стержня. Стержень раскручивается из состояния покоя до угловой скорости 30,0 рад/с за 3,00 с. Рассчитайте производимый вращательный момент.
      • Поскольку ось вращения находится в середине стержня, то плечо момента обоих грузов равно половине его длины, т.е. 2,0 м.
      • Поскольку форма, размер и строение “грузов” не оговаривается, мы можем предположить, что грузы являются материальными частицами.
      • Момент инерции можно вычислить следующим образом:
    4. Найдите угловое ускорение, α. Для расчета углового ускорения можно воспользоваться формулой α= at/r.

      • Первая формула, α= at/r, может использоваться в том случае, если дано тангенциальное ускорение и радиус.
      • Тангенциальное ускорение – это ускорение, направленное по касательной к направлению движения.
      • Представьте себе объект, двигающийся по криволинейному пути. Тангенциальное ускорение – это попросту его линейное ускорение на любой из точек всего пути.
      • В случае второй формулы, легче всего проиллюстрировать ее, связав с понятиями из кинематики: смещением, линейной скоростью и линейным ускорением.
      • Смещение – это расстояние, пройденное объектом (единица СИ – метры, м); линейная скорость – это показатель изменения смещения за единицу времени (единица СИ – м/с); линейное ускорение – это показатель изменения линейной скорости за единицу времени (единица СИ – м/с 2).
      • Теперь давайте рассмотрим аналоги этих величин при вращательном движении: угловое смещение, θ – угол поворота определенной точки или отрезка (единица СИ – рад); угловая скорость, ω – изменение углового смещения за единицу времени (единица СИ – рад/с); и угловое ускорение, α – изменение угловой скорости за единицу времени (единица СИ – рад/с 2).
      • Возвращаясь к нашему примеру – нам были даны данные для углового момента и время. Поскольку вращение начиналось из состояния покоя, то начальная угловая скорость равна 0. Мы можем воспользоваться уравнением, чтобы найти:
    5. Если вам сложно представить, как происходит вращение, то возьмите ручку и попробуйте воссоздать задачу. Для более точного воспроизведения не забудьте скопировать положение оси вращения и направление приложенной силы.