Как по графику определить формулу квадратичной функции. ГИА. Квадратичная функция

Во многих задачах требуется вычислить максимальное или минимальное значение квадратичной функции. Максимум или минимум можно найти, если исходная функция записана в стандартном виде: или через координаты вершины параболы: f (x) = a (x − h) 2 + k {\displaystyle f(x)=a(x-h)^{2}+k} . Более того, максимум или минимум любой квадратичной функции можно вычислить с помощью математических операций.

Шаги

Квадратичная функция записана в стандартном виде

    Запишите функцию в стандартном виде. Квадратичная функция - это функция, уравнение которой включает переменную x 2 {\displaystyle x^{2}} . Уравнение может включать или не включать переменную x {\displaystyle x} . Если уравнение включает переменную с показателем степени больше 2, оно не описывает квадратичную функцию. Если нужно, приведите подобные члены и переставьте их, чтобы записать функцию в стандартном виде.

    • Например, дана функция f (x) = 3 x + 2 x − x 2 + 3 x 2 + 4 {\displaystyle f(x)=3x+2x-x^{2}+3x^{2}+4} . Сложите члены с переменной x 2 {\displaystyle x^{2}} и члены с переменной x {\displaystyle x} , чтобы записать уравнение в стандартном виде:
      • f (x) = 2 x 2 + 5 x + 4 {\displaystyle f(x)=2x^{2}+5x+4}
  1. График квадратичной функции представляет собой параболу. Ветви параболы направлены вверх или вниз. Если коэффициент a {\displaystyle a} при переменной x 2 {\displaystyle x^{2}} a {\displaystyle a}

    • f (x) = 2 x 2 + 4 x − 6 {\displaystyle f(x)=2x^{2}+4x-6} . Здесь a = 2 {\displaystyle a=2}
    • f (x) = − 3 x 2 + 2 x + 8 {\displaystyle f(x)=-3x^{2}+2x+8} . Здесь , поэтому парабола направлена вниз.
    • f (x) = x 2 + 6 {\displaystyle f(x)=x^{2}+6} . Здесь a = 1 {\displaystyle a=1} , поэтому парабола направлена вверх.
    • Если парабола направлена вверх, нужно искать ее минимум. Если парабола направлена вниз, ищите ее максимум.
  2. Вычислите -b/2a. Значение − b 2 a {\displaystyle -{\frac {b}{2a}}} – это координата x {\displaystyle x} вершины параболы. Если квадратичная функция записывается в стандартном виде a x 2 + b x + c {\displaystyle ax^{2}+bx+c} , воспользуйтесь коэффициентами при x {\displaystyle x} и x 2 {\displaystyle x^{2}} следующим образом:

    • В функции коэффициенты a = 1 {\displaystyle a=1} и b = 10 {\displaystyle b=10}
      • x = − 10 (2) (1) {\displaystyle x=-{\frac {10}{(2)(1)}}}
      • x = − 10 2 {\displaystyle x=-{\frac {10}{2}}}
    • В качестве второго примера рассмотрим функцию . Здесь a = − 3 {\displaystyle a=-3} и b = 6 {\displaystyle b=6} . Поэтому координату «x» вершины параболы вычислите так:
      • x = − b 2 a {\displaystyle x=-{\frac {b}{2a}}}
      • x = − 6 (2) (− 3) {\displaystyle x=-{\frac {6}{(2)(-3)}}}
      • x = − 6 − 6 {\displaystyle x=-{\frac {6}{-6}}}
      • x = − (− 1) {\displaystyle x=-(-1)}
      • x = 1 {\displaystyle x=1}
  3. Найдите соответствующее значение f(x). Подставьте найденное значение «x» в исходную функцию, чтобы найти соответствующее значение f(x). Так вы найдете минимум или максимум функции.

    • В первом примере f (x) = x 2 + 10 x − 1 {\displaystyle f(x)=x^{2}+10x-1} вы вычислили, что координата «х» вершины параболы равна x = − 5 {\displaystyle x=-5} . В исходной функции вместо x {\displaystyle x} подставьте − 5 {\displaystyle -5}
      • f (x) = x 2 + 10 x − 1 {\displaystyle f(x)=x^{2}+10x-1}
      • f (x) = (− 5) 2 + 10 (− 5) − 1 {\displaystyle f(x)=(-5)^{2}+10(-5)-1}
      • f (x) = 25 − 50 − 1 {\displaystyle f(x)=25-50-1}
      • f (x) = − 26 {\displaystyle f(x)=-26}
    • Во втором примере f (x) = − 3 x 2 + 6 x − 4 {\displaystyle f(x)=-3x^{2}+6x-4} вы нашли, что координата «х» вершины параболы равна x = 1 {\displaystyle x=1} . В исходной функции вместо x {\displaystyle x} подставьте 1 {\displaystyle 1} , чтобы найти ее максимальное значение:
      • f (x) = − 3 x 2 + 6 x − 4 {\displaystyle f(x)=-3x^{2}+6x-4}
      • f (x) = − 3 (1) 2 + 6 (1) − 4 {\displaystyle f(x)=-3(1)^{2}+6(1)-4}
      • f (x) = − 3 + 6 − 4 {\displaystyle f(x)=-3+6-4}
      • f (x) = − 1 {\displaystyle f(x)=-1}
  4. Запишите ответ. Перечитайте условие задачи. Если нужно найти координаты вершины параболы, в ответе запишите оба значения x {\displaystyle x} и y {\displaystyle y} (или f (x) {\displaystyle f(x)} ). Если необходимо вычислить максимум или минимум функции, в ответе запишите только значение y {\displaystyle y} (или f (x) {\displaystyle f(x)} ). Еще раз посмотрите на знак коэффициента a {\displaystyle a} , чтобы проверить, что вы вычислили: максимум или минимум.

    • В первом примере f (x) = x 2 + 10 x − 1 {\displaystyle f(x)=x^{2}+10x-1} значение a {\displaystyle a} положительное, поэтому вы вычислили минимум. Вершина параболы лежит в точке с координатами (− 5 , − 26) {\displaystyle (-5,-26)} , а минимальное значение функции равно − 26 {\displaystyle -26} .
    • Во втором примере f (x) = − 3 x 2 + 6 x − 4 {\displaystyle f(x)=-3x^{2}+6x-4} значение a {\displaystyle a} отрицательное, поэтому вы нашли максимум. Вершина параболы лежит в точке с координатами (1 , − 1) {\displaystyle (1,-1)} , а максимальное значение функции равно − 1 {\displaystyle -1} .
  5. Определите направление параболы. Для этого посмотрите на знак коэффициента a {\displaystyle a} . Если коэффициент a {\displaystyle a} положительный, парабола направлена вверх. Если коэффициент a {\displaystyle a} отрицательный, парабола направлена вниз. Например:

    • . Здесь a = 2 {\displaystyle a=2} , то есть коэффициент положительный, поэтому парабола направлена вверх.
    • . Здесь a = − 3 {\displaystyle a=-3} , то есть коэффициент отрицательный, поэтому парабола направлена вниз.
    • Если парабола направлена вверх, нужно вычислить минимальное значение функции. Если парабола направлена вниз, необходимо найти максимальное значение функции.
  6. Найдите минимальное или максимальное значение функции. Если функция записана через координаты вершины параболы, минимум или максимум равен значению коэффициента k {\displaystyle k} . В приведенных выше примерах:

    • f (x) = 2 (x + 1) 2 − 4 {\displaystyle f(x)=2(x+1)^{2}-4} . Здесь k = − 4 {\displaystyle k=-4} . Это минимальное значение функции, потому что парабола направлена вверх.
    • f (x) = − 3 (x − 2) 2 + 2 {\displaystyle f(x)=-3(x-2)^{2}+2} . Здесь k = 2 {\displaystyle k=2} . Это максимальное значение функции, потому что парабола направлена вниз.
  7. Найдите координаты вершины параболы. Если в задаче требуется найти вершину параболы, ее координаты равны (h , k) {\displaystyle (h,k)} . Обратите внимание, когда квадратичная функция записана через координаты вершины параболы, в скобки должна быть заключена операция вычитания (x − h) {\displaystyle (x-h)} , поэтому значение h {\displaystyle h} берется с противоположным знаком.

    • f (x) = 2 (x + 1) 2 − 4 {\displaystyle f(x)=2(x+1)^{2}-4} . Здесь в скобки заключена операция сложения (x+1), которую можно переписать так: (x-(-1)). Таким образом, h = − 1 {\displaystyle h=-1} . Поэтому координаты вершины параболы этой функции равны (− 1 , − 4) {\displaystyle (-1,-4)} .
    • f (x) = − 3 (x − 2) 2 + 2 {\displaystyle f(x)=-3(x-2)^{2}+2} . Здесь в скобках находится выражение (x-2). Следовательно, h = 2 {\displaystyle h=2} . Координаты вершины равны (2,2).

Как вычислить минимум или максимум с помощью математических операций

  1. Сначала рассмотрим стандартный вид уравнения. Запишите квадратичную функцию в стандартном виде: f (x) = a x 2 + b x + c {\displaystyle f(x)=ax^{2}+bx+c} . Если нужно, приведите подобные члены и переставьте их, чтобы получить стандартное уравнение.

    • Например: .
  2. Найдите первую производную. Первая производная квадратичной функции, которая записана в стандартном виде, равна f ′ (x) = 2 a x + b {\displaystyle f^{\prime }(x)=2ax+b} .

    • f (x) = 2 x 2 − 4 x + 1 {\displaystyle f(x)=2x^{2}-4x+1} . Первая производная этой функции вычисляется следующим образом:
      • f ′ (x) = 4 x − 4 {\displaystyle f^{\prime }(x)=4x-4}
  3. Производную приравняйте к нулю. Напомним, что производная функции равна угловому коэффициенту функции в определенной точке. В минимуме или максимуме угловой коэффициент равен нулю. Поэтому, чтобы найти минимальное или максимальное значение функции, производную нужно приравнять к нулю. В нашем примере.

Функция вида , где называется квадратичной функцией .

График квадратичной функции – парабола .


Рассмотрим случаи:

I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА

То есть , ,

Для построения заполняем таблицу, подставляя значения x в формулу:


Отмечаем точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х (в данном случае шаг 1), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:


Нетрудно заметить, что если мы возьмем случай , , , то есть , то мы получим параболу, симметричную относительно оси (ох). Убедиться в этом несложно, заполнив аналогичную таблицу:


II СЛУЧАЙ, «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

Что же будет, если мы будем брать , , ? Как изменится поведение параболы? При title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;"> парабола изменит форму, она “похудеет” по сравнению с параболой (не верите – заполните соответствующую таблицу – и убедитесь сами):


На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях ордината каждой точки умножилась на 4. Это произойдет со всеми ключевыми точками исходной таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

А при парабола «станет шире» параболы :


Давайте подытожим:

1) Знак коэффициента отвечает за направление ветвей. При title="Rendered by QuickLaTeX.com" height="14" width="47" style="vertical-align: 0px;"> ветви направлены вверх, при - вниз.

2) Абсолютная величина коэффициента (модуля) отвечает за “расширение”, “сжатие” параболы. Чем больше , тем у’же парабола, чем меньше |a|, тем шире парабола.

III СЛУЧАЙ, ПОЯВЛЯЕТСЯ «С»

Теперь давайте введем в игру (то есть рассматриваем случай, когда ), будем рассматривать параболы вида . Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы вдоль оси вверх или вниз в зависимости от знака :



IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

Когда же парабола “оторвется” от оси и будет, наконец, “гулять” по всей координатной плоскости? Когда перестанет быть равным .

Здесь для построения параболы нам понадобится формула для вычисления вершины: , .

Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу , что уже нам по силам. Если имеем дело со случаем , то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с , например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

Например, вершина параболы :

Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы , ведь в нашем случае.

При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

1) парабола обязательно пройдет через точку . Действительно, подставив в формулу x=0, получим, что . То есть ордината точки пересечения параболы с осью (оу), это . В нашем примере (выше), парабола пересекает ось ординат в точке , так как .

2) осью симметрии параболы является прямая , поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

3) Приравнивая к , мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение . В зависимости от дискриминанта, будем получать одну (, ), две ( title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">, ) или нИсколько () точек пересечения с осью (ох) . В предыдущем примере у нас корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения с осью (ох) у нас будут (так как title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">), хотя, в общем, это видно и без дискриминанта.

Итак, давайте выработаем

Алгоритм для построения параболы, если она задана в виде

1) определяем направление ветвей (а>0 – вверх, a<0 – вниз)

2) находим координаты вершины параболы по формуле , .

3) находим точку пересечения параболы с осью (оу) по свободному члену , строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение велико… пропускаем этот пункт…)

4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу . Если title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;">, то парабола становится у’же по сравнению с , если , то парабола расширяется по сравнению с

5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение

Пример 1


Пример 2


Замечание 1. Если же парабола изначально нам задана в виде , где – некоторые числа (например, ), то построить ее будет еще легче, потому что нам уже заданы координаты вершины . Почему?

Возьмем квадратный трехчлен и выделим в нем полный квадрат: Посмотрите, вот мы и получили, что , . Мы с вами ранее называли вершину параболы , то есть теперь , .

Например, . Отмечаем на плоскости вершину параболы , понимаем, что ветви направлены вниз, парабола расширена (относительно ). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

Замечание 2. Если парабола задана в виде, подобном этому (то есть представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.

На уроках математики в школе Вы уже познакомились с простейшими свойствами и графиком функции y = x 2 . Давайте расширим знания по квадратичной функции .

Задание 1.

Построить график функции y = x 2 . Масштаб: 1 = 2 см. Отметьте на оси Oy точку F (0; 1/4). Циркулем или полоской бумаги измерьте расстояние от точки F до какой-нибудь точки M параболы. Затем приколите полоску в точке M и поверните ее вокруг этой точки так, чтобы она стала вертикальной. Конец полоски опустится немного ниже оси абсцисс (рис. 1) . Отметьте на полоске, насколько она выйдет за ось абсцисс. Возьмите теперь другую точку на параболе и повторите измерение еще раз. Насколько теперь опустился край полоски за ось абсцисс?

Результат: какую бы точку на параболе y = x 2 вы не взяли, расстояние от этой точки до точки F(0; 1/4) будет больше расстояния от той же точки до оси абсцисс всегда на одно и то же число – на 1/4.

Можно сказать иначе: расстояние от любой точки параболы до точки (0; 1/4) равно расстоянию от той же точки параболы до прямой y = -1/4. Эта замечательная точка F(0; 1/4) называется фокусом параболы y = x 2 , а прямая y = -1/4 – директрисой этой параболы. Директриса и фокус есть у каждой параболы.

Интересные свойства параболы:

1. Любая точка параболы равноудалена от некоторой точки, называемой фокусом параболы, и некоторой прямой, называемой ее директрисой.

2. Если вращать параболу вокруг оси симметрии (например, параболу y = x 2 вокруг оси Oy), то получится очень интересная поверхность, которая называется параболоидом вращения.

Поверхность жидкости во вращающемся сосуде имеет форму параболоида вращения. Вы можете увидеть эту поверхность, если сильно помешаете ложечкой в неполном стакане чая, а потом вынете ложечку.

3. Если в пустоте бросить камень под некоторым углом к горизонту, то он полетит по параболе (рис. 2).

4. Если пересечь поверхность конуса плоскостью, параллельной какой-либо одной его образующей, то в сечении получится парабола (рис. 3) .

5. В парках развлечений иногда устраивают забавный аттракцион «Параболоид чудес». Каждому, из стоящих внутри вращающегося параболоида, кажется, что он стоит на полу, а остальные люди каким-то чудом держаться на стенках.

6. В зеркальных телескопах также применяют параболические зеркала: свет далекой звезды, идущий параллельным пучком, упав на зеркало телескопа, собирается в фокус.

7. У прожекторов зеркало обычно делается в форме параболоида. Если поместить источник света в фокусе параболоида, то лучи, отразившись от параболического зеркала, образуют параллельный пучок.

Построение графика квадратичной функции

На уроках математики вы изучали получение из графика функции y = x 2 графиков функций вида:

1) y = ax 2 – растяжение графика y = x 2 вдоль оси Oy в |a| раз (при |a| < 0 – это сжатие в 1/|a| раз, рис. 4 ).

2) y = x 2 + n – сдвиг графика на n единиц вдоль оси Oy, причем, если n > 0, то сдвиг вверх, а если n < 0, то вниз, (или же можно переносить ось абсцисс).

3) y = (x + m) 2 – сдвиг графика на m единиц вдоль оси Ox: если m < 0, то вправо, а если m > 0, то влево, (рис. 5) .

4) y = -x 2 – симметричное отображение относительно оси Ox графика y = x 2 .

Подробнее остановимся на построении графика функции y = a(x – m) 2 + n .

Квадратичную функцию вида y = ax 2 + bx + c всегда можно привести к виду

y = a(x – m) 2 + n, где m = -b/(2a), n = -(b 2 – 4ac)/(4a).

Докажем это.

Действительно,

y = ax 2 + bx + c = a(x 2 + (b/a) x + c/a) =

A(x 2 + 2x · (b/a) + b 2 /(4a 2) – b 2 /(4a 2) + c/a) =

A((x + b/2a) 2 – (b 2 – 4ac)/(4a 2)) = a(x + b/2a) 2 – (b 2 – 4ac)/(4a).

Введем новые обозначения.

Пусть m = -b/(2a) , а n = -(b 2 – 4ac)/(4a) ,

тогда получим y = a(x – m) 2 + n или y – n = a(x – m) 2 .

Сделаем еще замены: пусть y – n = Y, x – m = X (*).

Тогда получим функцию Y = aX 2 , графиком которой является парабола.

Вершина параболы находится в начале координат. X = 0; Y = 0.

Подставив координаты вершины в (*), получаем координаты вершины графика y = a(x – m) 2 + n: x = m, y = n.

Таким образом, для того, чтобы построить график квадратичной функции, представленной в виде

y = a(x – m) 2 + n

путем преобразований, можно действовать следующим образом:

a) построить график функции y = x 2 ;

б) путем параллельного переноса вдоль оси Ox на m единиц и вдоль оси Oy на n единиц – вершину параболы из начала координат перевести в точку с координатами (m; n) (рис. 6) .

Запись преобразований:

y = x 2 → y = (x – m) 2 → y = a(x – m) 2 → y = a(x – m) 2 + n.

Пример.

С помощью преобразований построить в декартовой системе координат график функции y = 2(x – 3) 2 2.

Решение.

Цепочка преобразований:

y = x 2 (1) → y = (x – 3) 2 (2) → y = 2(x – 3) 2 (3) → y = 2(x – 3) 2 – 2 (4) .

Построение графика изображено на рис. 7 .

Вы можете практиковаться в построении графиков квадратичной функции самостоятельно. Например, постройте в одной системе координат с помощью преобразований график функции y = 2(x + 3) 2 + 2. Если у вас возникнут вопросы или же вы захотите получить консультацию учителя, то у вас есть возможность провести бесплатное 25-минутное занятие с онлайн репетитором после регистрации . Для дальнейшей работы с преподавателем вы сможете выбрать подходящий вам тарифный план.

Остались вопросы? Не знаете, как построить график квадратичной функции?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Как построить параболу? Существует несколько способов построения графика квадратичной функции. Каждый из них имеет свои плюсы и минусы. Рассмотрим два способа.

Начнём с построения графика квадратичной функции вида y=x²+bx+c и y= -x²+bx+c.

Пример.

Построить график функции y=x²+2x-3.

Решение:

y=x²+2x-3 — квадратичная функция. График — парабола ветвями вверх. Координаты вершины параболы

От вершины (-1;-4) строим график параболы y=x²(как от начала координат. Вместо (0;0) — вершина (-1;-4). От (-1;-4) идём вправо на 1 единицу и вверх на 1 единицу, затем влево на 1 и вверх на 1; далее: 2 — вправо, 4 — вверх, 2- влево, 4 — вверх; 3 — вправо, 9 — вверх, 3 — влево, 9 — вверх. Если этих 7 точек недостаточно, далее — 4 вправо, 16 — вверх и т. д.).

График квадратичной функции y= -x²+bx+c — парабола, ветви которой направлены вниз. Для построения графика ищем координаты вершины и от неё строим параболу y= -x².

Пример.

Построить график функции y= -x²+2x+8.

Решение:

y= -x²+2x+8 — квадратичная функция. График — парабола ветвями вниз. Координаты вершины параболы

От вершины строим параболу y= -x² (1 — вправо, 1- вниз; 1 — влево, 1 — вниз; 2 — вправо, 4 — вниз; 2 — влево, 4 — вниз и т. д.):

Этот способ позволяет построить параболу быстро и не вызывает затруднений, если вы умеете строить графики функций y=x² и y= -x². Недостаток: если координаты вершины — дробные числа, строить график не очень удобно. Если требуется знать точные значения точек пересечения графика с осью Ох, придется дополнительно решить уравнение x²+bx+c=0 (или —x²+bx+c=0), даже если эти точки непосредственно можно определить по рисунку.

Другой способ построения параболы — по точкам, то есть можно найти несколько точек графика и через них провести параболу (с учетом того, что прямая x=хₒ является её осью симметрии). Обычно для этого берут вершину параболы, точки пересечения графика с осями координат и 1-2 дополнительные точки.

Построить график функции y=x²+5x+4.

Решение:

y=x²+5x+4 — квадратичная функция. График — парабола ветвями вверх. Координаты вершины параболы

то есть вершина параболы — точка (-2,5; -2,25).

Ищем . В точке пересечения с осью Ох y=0: x²+5x+4=0. Корни квадратного уравнения х1=-1, х2=-4, то есть получили две точки графике (-1; 0) и (-4; 0).

В точке пересечения графика с осью Оy х=0: y=0²+5∙0+4=4. Получили точку (0; 4).

Для уточнения графика можно найти дополнительную точку. Возьмем х=1, тогда y=1²+5∙1+4=10, то есть еще одна точка графика — (1; 10). Отмечаем эти точки на координатной плоскости. С учетом симметрии параболы относительно прямой, проходящей через её вершину, отметим еще две точки: (-5; 6) и (-6; 10) и проведем через них параболу:

Построить график функции y= -x²-3x.

Решение:

y= -x²-3x — квадратичная функция. График — парабола ветвями вниз. Координаты вершины параболы

Вершина (-1,5; 2,25) — первая точка параболы.

В точках пересечения графика с осью абсцисс y=0, то есть решаем уравнение -x²-3x=0. Его корни — х=0 и х=-3, то есть (0;0) и (-3; 0) — еще две точки графика. Точка (о; 0) является также точкой пересечения параболы с осью ординат.

При х=1 y=-1²-3∙1=-4, то есть (1; -4) — дополнительная точка для построения графика.

Построение параболы по точкам — более трудоёмкий, по сравнению с первым, способ. Если парабола не пересекает ось Oх, дополнительных точек потребуется больше.

Прежде чем продолжить построение графиков квадратичных функций вида y=ax²+bx+c, рассмотрим построение графиков функций с помощью геометрических преобразований. Графики функций вида y=x²+c также удобнее всего строить, используя одно из таких преобразований — параллельный перенос.

Рубрика: |

У р о к 15.
Влияние коэффициентов а, b и с на расположение
графика квадратичной функции

Цели: продолжить формирование умения строить график квадратичной функции и перечислять ее свойства; выявить влияние коэффициентов а , b и с на расположение графика квадратичной функции.

Ход урока

I. Организационный момент.

II. Устная работа.

Определите, график какой функции изображен на рисунке:

у = х 2 – 2х – 1;

у = –2х 2 – 8х ;

у = х 2 – 4х – 1;

у = 2х 2 + 8х + 7;

у = 2х 2 – 1.

б)

у = х 2 – 2х ;

у = –х 2 + 4х + 1;

у = –х 2 – 4х + 1;

у = –х 2 + 4х – 1;

у = –х 2 + 2х – 1.

III. Формирование умений и навыков.

Упражнения:

1. № 127 (а).

Р е ш е н и е

Прямая у = 6х + b касается параболы у = х 2 + 8, то есть имеет с ней только одну общую точку в том случае, когда уравнение 6х + b = х 2 + 8 будет иметь единственное решение.

Это уравнение является квадратным, найдем его дискриминант:

х 2 – 6х + 8 + b = 0;

D 1 = 9 – (8 – b ) = 1 + b;

D 1 = 0, если 1 + b = 0, то есть b = –1.

О т в е т: b = –1.

3. Выявить влияние коэффициентов а , b и с на расположение графика функции у = ах 2 + + с .

Учащиеся обладают достаточными знаниями, чтобы выполнить это задание самостоятельно. Следует предложить им все полученные выводы занести в тетрадь, при этом выделив «основную» роль каждого из коэффициентов.

1) Коэффициент а влияет на направление ветвей параболы: при а > 0 – ветви направлены вверх, при а < 0 – вниз.

2) Коэффициент b влияет на расположение вершины параболы. При b = 0 вершина лежит на оси оу .

3) Коэффициент с показывает точку пересечения параболы с осью ОУ .

После этого можно привести пример, показывающий, что можно сказать о коэффициентах а , b и с по графику функции.

Значение с можно назвать точно: поскольку график пересекает ось ОУ в точке (0; 1), то с = 1.

Коэффициент а можно сравнить с нулем: так как ветви параболы направлены вниз, то а < 0.

Знак коэффициента b можно узнать из формулы, определяющей абсциссу вершины параболы: т = , так как а < 0 и т = 1, то b > 0.

4. Определите, график какой функции изображен на рисунке, опираясь на значение коэффициентов а , b и с .

у = –х 2 + 2х ;

у = х 2 + 2х + 2;

у = 2х 2 – 3х – 2;

у = х 2 – 2.

Р е ш е н и е

а , b и с :

а > 0, так как ветви параболы направлены вверх;

b ОУ ;

с = –2, так как парабола пересекает ось ординат в точке (0; –2).

у = 2х 2 – 3х – 2.

у = х 2 – 2х ;

у = –2х 2 + х + 3;

у = –3х 2 – х – 1;

у = –2,7х 2 – 2х .

Р е ш е н и е

По изображенному графику делаем следующие выводы о коэффициентах а , b и с :

а < 0, так как ветви параболы направлены вниз;

b ≠ 0, так как вершина параболы не лежит на оси ОУ ;

с = 0, так как парабола пересекает ось ОУ в точке (0; 0).

Всем этим условиям удовлетворяет только функция у = –2,7х 2 – 2х .

5. По графику функции у = ах 2 + + с а , b и с :

а) б)

Р е ш е н и е

а) Ветви параболы направлены вверх, поэтому а > 0.

Парабола пересекает ось ординат в нижней полуплоскости, поэтому с < 0. Чтобы узнать знак коэффициента b воспользуемся формулой для нахождения абсциссы вершины параболы: т = . По графику видно, что т < 0, и мы определим, что а > 0. Поэтому b > 0.

б) Аналогично определяем знаки коэффициентов а , b и с :

а < 0, с > 0, b < 0.

Сильным в учебе учащимся можно дать дополнительно выполнить № 247.

Р е ш е н и е

у = х 2 + рх + q.

а) По теореме Виета, известно, что если х 1 и х 2 – корни уравнения х 2 +
+ рх + q = 0 (то есть нули данной функции), то х 1 · х 2 = q и х 1 + х 2 = –р . Получаем, что q = 3 · 4 = 12 и р = –(3 + 4) = –7.

б) Точка пересечения параболы с осью ОУ даст значение параметра q , то есть q = 6. Если график функции пересекает ось ОХ в точке (2; 0), то число 2 является корнем уравнения х 2 + рх + q = 0. Подставляя значение х = 2 в это уравнение, получим, что р = –5.

в) Своего наименьшего значения данная квадратичная функция достигает в вершине параболы, поэтому , откуда р = –12. По условию значение функции у = х 2 – 12х + q в точке x = 6 равно 24. Подставляя x = 6 и у = 24 в данную функцию, находим, что q = 60.

IV. Проверочная работа.

В а р и а н т 1

1. Постройте график функции у = 2х 2 + 4х – 6 и найдите, используя график:

а) нули функции;

б) промежутки, в которых у > 0 и y < 0;

г) наименьшее значение функции;

д) область значения функции.

2. Не строя график функции у = –х 2 + 4х , найдите:

а) нули функции;

в) область значения функции.

3. По графику функции у = ах 2 + + с определите знаки коэффициентов а , b и с :

В а р и а н т 2

1. Постройте график функции у = –х 2 + 2х + 3 и найдите, используя график:

а) нули функции;

б) промежутки, в которых у > 0 и y < 0;

в) промежутки возрастания и убывания функции;

г) наибольшее значение функции;

д) область значения функции.

2. Не строя график функции у = 2х 2 + 8х , найдите:

а) нули функции;

б) промежутки возрастания и убывания функции;

в) область значения функции.

3. По графику функции у = ах 2 + + с определите знаки коэффициентов а , b и с :

V. Итоги урока.

В о п р о с ы у ч а щ и м с я:

– Опишите алгоритм построения квадратичной функции.

– Перечислите свойства функции у = ах 2 + + с при а > 0 и при а < 0.

– Как влияют коэффициенты а , b и с на расположение графика квадратичной функции?

Домашнее задание: № 127 (б), № 128, № 248.

Д о п о л н и т е л ь н о: № 130.