Исследование явления дифракции света. Краткая теория дифракция света

Наряду с интерференцией другим примером общего для всех волновых процессов явления может служить дифракция - огибание волнами препятствий. Для световых волн дифракция проявляется в отклонении от прямолинейного распространения и загибании света в область геометрической тени.

Характерной особенностью дифракционных явлений в оптике оказывается то, что здесь, как правило, длина волны света почти всегда много меньше размеров преград на пути световых волн. Поэтому наблюдать дифракцию света можно только на достаточно больших расстояниях от преграды. Проявление дифракции состоит в том, что распределение освещенности отличается от простой картины, предсказываемой геометрической оптикой на основе прямолинейного распространения света.

Принцип Гюйгенса-Френеля. Строгий расчет дифракционной картины представляет собой очень сложную математическую задачу. Но в некоторых практически важных случаях достаточно

Рис. 199. К расчету дифракции на основе принципа Гюйгенса-Френеля

хорошее приближение дает упрощенный подход, основанный на использовании принципа Гюйгенса-Френеля.

Пусть поверхность представляет собой положение волновой поверхности в некоторый момент времени (рис. 199).

Для того чтобы определить вызванные волной колебания в некоторой точке Р, нужно, по Френелю, определить колебания, вызываемые в этой точке отдельными вторичными волнами, приходящими в нее от отдельных элементов поверхности и затем сложить эти колебания с учетом их амплитуд и фаз. При этом следует считать, что в точке Р сказывается влияние только той части волновой поверхности которая не загораживается каким-либо препятствием.

Зоны Френеля. Проиллюстрируем применение принципа Гюйгенса-Френеля на следующем примере. Пусть на непрозрачную преграду с круглым отверстием падает слева плоская монохроматическая волна (рис. 200). Такую волну можно получить, например, от точечного источника монохроматического света, удаленного на бесконечность или помещенного в фокус собирающей линзы большого диаметра.

Рис. 200. Падение плоской монохроматической волны на преграду с круглым отверстием

Рис. 201. Построение зон Френеля

Будем интересоваться освещенностью экрана в точке Р, находящейся на оси симметрии.

Для учета интерференции вторичных волн Френель предложил мысленно разбить волновую поверхность падающей волны в месте расположения преграды на кольцевые зоны (зоны Френеля) по следующему правилу: расстояния от краев соседних зон до точки Р (рис. 201) должны отличаться на половину длины волны, т. е.

Если смотреть на волновую поверхность из точки Р, то зоны Френеля будут выглядеть так, как показано на рис. 202. Из рис. 201 легко найти радиусы зон Френеля:

Видно, что радиус зоны пропорционален если При выполнении этого условия площади зон Френеля можно считать одинаковыми. Результат интерференции вторичных волн в точке Р, как мы увидим ниже, определяется тем, сколько зон Френеля открывает круглое отверстие на волновой поверхности.

Рис. 202. Зоны Френеля

Дифракция Френеля на круглом отверстии. Предположим, что отверстие в преграде представляет собой диафрагму, диаметр которой можно изменять. Пусть сначала радиус отверстия много меньше радиуса первой зоны Френеля. Тогда можно считать, что колебания от всех точек волновой поверхности в этом маленьком отверстии приходят в точку Р практически в одинаковой фазе. Изобразим колебание поля в точке Р, вызванное этой вторичной волной, с помощью векторной диаграммы (рис. 203а). Этому колебанию на ней сопоставляется вектор который вращается с угловой скоростью , равной циклической частоте падающей волны, в направлении против часовой стрелки. Увеличим отверстие диафрагмы еще немного, так чтобы площадь его удвоилась. Колебания, приходящие в точку Р от вновь открытого участка волновой поверхности, несколько отстают по фазе и изображаются на диаграмме вектором Длина этого вектора равна длине вектора так как равны между собой площади соответствующих им участков волновой поверхности. Продолжая увеличивать отверстие диафрагмы, будем откладывать на диаграмме векторы, соответствующие приходящим в точку Р колебаниям от вновь открываемых участков волновой поверхности. Колебаниям, приходящим в Я от участка, прилегающего к границе первой зоны Френеля, будет соответствовать вектор повернутый относительно на так как, согласно определению зон Френеля, разность хода соответствующих им вторичных волн равна

Рис. 203. Расчет амплитуды результирующего колебания в точке Р с помощью векторных диаграмм: а - в отверстии укладывается одна зона Френеля; - две зоны Френеля

Результирующее колебание в точке Р, создаваемое волной, которая прошла через круглое отверстие, совпадающее с первой зоной Френеля, изображается вектором (рис. 203а). Будем увеличивать отверстие диафрагмы дальше. Когда на нем будут умещаться две первые зоны Френеля, векторная диаграмма колебаний в точке Р примет вид, изображенный на рис. 2036. При строгом равенстве амплитуд складываемых колебаний амплитуда результирующего колебания должна была бы равняться нулю, т. е. вторичные волны при двух открытых зонах Френеля полностью гасили бы друг друга в точке Р. Однако действие даже одинаковых по площади участков волновой поверхности в точке Р несколько убывает по мере увеличения угла между направлением на точку Р и нормалью к волновой поверхности (см. рис. 199). Поэтому в действительности амплитуда имеет конечное, хотя и очень малое значение.

Таким образом, освещенность экрана в точке Р, пропорциональная квадрату амплитуды результирующего колебания, будет по мере увеличения отверстия круглой диафрагмы меняться немонотонно. Пока открывается первая зона Френеля, освещенность в Р увеличивается и становится максимальной при полностью открытой первой зоне. По мере открывания второй зоны Френеля освещенность убывает и при полностью открытой второй зоне уменьшается почти до нуля. Затем освещенность будет увеличиваться снова, и т. д.

Эти на первый взгляд парадоксальные результаты, предсказываемые на основе принципа Гюйгенса-Френеля, хорошо согласуются с экспериментом. Подчеркнем, что они находятся в вопиющем противоречии с предсказаниями геометрической оптики, согласно которой при падении плоской волны освещенность в точке Р, лежащей на оси круглого отверстия, не зависит от диаметра отверстия.

Дифракция Френеля на круглом диске. Пятно Араго-Пуассона. Наиболее неожиданным в полученных выше результатах является, пожалуй, то, что при двух открытых зонах Френеля (и вообще при небольшом четном числе открытых зон) освещенность в точке Р близка к нулю. Не менее неожиданным является то, что в точке Р позади непрозрачного круглого экрана, расположенного на месте преграды с отверстием, освещенность не будет равна нулю, как это следовало бы из геометрической оптики. Если при этом непрозрачный круглый экран перекрывает лишь несколько первых зон Френеля, то в точке Р освещенность будет почти такой же, как и без экрана.

В этом можно убедиться, если рассматривать вектор А, изображающий колебания напряженности поля в точке Р при полностью открытой волновой поверхности, как сумму двух векторов, один из которых изображает колебания от открытого участка волновой поверхности, а другой - от тех зон Френеля, которые перекрыты экраном. В центре геометрической тени оказывается свет - так называемое пятно Араго-Пуассона.

Это предсказание теории Френеля произвело сильное впечатление на его современников. В 1818 г. член конкурсного комитета Французской академии С. Пуассон, рассматривавший представленный на премию мемуар Френеля, пришел к выводу о том, что в центре тени маленького диска должно находиться светлое пятно, но счел этот вывод столь абсурдным, что выдвинул его как возражение против волновой теории света, развивавшейся Френелем. Однако другой член того же комитета Араго выполнил эксперимент, показавший, что это удивительное предсказание правильно.

Расстояния, на которых сказывается дифракция. Теперь не представляет труда оценить те условия наблюдения, при которых дифракционные явления становятся существенными и картина распределения освещенности на экране заметно отличается от предсказываемой геометрической оптикой. По геометрической оптике распределение освещенности на экране должно соответствовать форме отверстия, так что освещенность экрана равна нулю в области геометрической тени, а в точке Р такая же, как и в отсутствие преграды. Но мы видели, что в случае, когда на отверстии укладывается лишь несколько зон Френеля, освещенность в точке Р совсем иная. Это дает возможность оценить то расстояние от отверстия до точки наблюдения, на котором именно дифракционные явления определяют наблюдаемую картину. Для этого в формуле (2) следует считать к положить равным размеру отверстия (или преграды) В результате находим

Дифракция Фраунгофера. Но можно осуществить такие условия наблюдения дифракции света, при которых возможен полный расчет распределения освещенности в дифракционной картине на экране.

Пусть плоская монохроматическая волна от бесконечно удаленного точечного источника падает на экран с отверстием, а дифракционная картина наблюдается на экране в фокальной плоскости линзы (рис. 204). Так как в каждой точке фокальной плоскости линзы, например Р на рис. 204, сходятся лучи, которые до линзы были параллельны между собой, то наблюдаемая здесь картина называется дифракцией в параллельных лучах. Как мы увидим в дальнейшем, линза не вносит дополнительной разности хода между параллельными до линзы лучами. Поэтому

Рис. 204. Наблюдение дифракции в параллельных лучах

складывающиеся в точке Р колебания имеют такую же разность фаз, как и до линзы на плоскости, перпендикулярной к этим лучам. Такая схема наблюдения дифракции была предложена И. Фраунгофером.

Пусть отверстие в экране представляет собой щель шириной (рис. 205), которую считаем бесконечно протяженной в направлении оси у.

Рис. 205. Наблюдение дифракции от щели с параллельными краями

Построенные по принципу Гюйгенса волновые поверхности позади щели представляют собой цилиндрические поверхности с образующей, параллельной краям щели (рис. 206). Так как волновая поверхность в направлении оси у не ограничена, то дифракционных эффектов в этом направлении быть не может.

Поэтому весь прошедший через линзу и попадающий на экран дифрагированный свет будет сосредоточен вдоль линии лежащей в плоскости Вместо изображения точечного источника в фокальной плоскости линзы, которое было бы в отсутствие щели, получается дифракционная картина, вытянутая вдоль линии

Рис. 206. Волновые поверхности, построенные по принципу Гюйгенса

Если создающий падающую волну точечный источник сместить вдоль оси у так, чтобы падающие на щель параллельные лучи образовали некоторый угол с осью то дифракционная картина на экране, не изменяя своего вида, сместится из положения на такой же угол. Поэтому при замене точечного источника света на тонкую светящуюся линию, параллельную оси у, каждый ее точечный элемент будет создавать свою дифракционную картину, параллельную а вся дифракционная картина на экране будет состоять из параллельных светлых и темных полос, как показано на рис. 205. Для ее нахождения достаточно рассмотреть только плоскость

Согласно принципу Гюйгенса-Френеля волновую поверхность падающей волны в щели на оси х следует разбить на столь малые участки, чтобы колебания в точке наблюдения Р, вызываемые вторичными волнами от всех точек одного участка, имели почти одинаковую фазу. Колебания в точке Р, вызываемые вторичными волнами, распространяющимися под углом от разных участков (рис. 207), следует просуммировать с учетом сдвигов по фазе. Это удобно сделать с помощью векторной диаграммы, построенной на рис. 208.

Рис. 207. К расчету суммарного колебания в точке Р

Вектор изображает колебания, приходящие в точку Р от участка лежащего вблизи нижнего края щели. Вектор изображающий колебания от соседнего участка повернут относительно на некоторый небольшой угол. Вектор изображающий колебания от последнего участка лежащего у верхнего края щели, повернут относительно вектора на угол соответствующий разности хода (рис. 207) между лучами, приходящими от краев щели. Чтобы найти сдвиг по фазе между колебаниями в точке Р, вызванными волнами с разностью хода следует учесть, что сдвиг по фазе равен при разности хода X:

Рис. 208. Сложение колебаний с помощью векторной диаграммы

Освещенность экрана в точке Р, пропорциональная квадрату амплитуды колебаний, связана с освещенностью в точке О, согласно (5), следующим соотношением:

где дается формулой (4). Распределение освещенности на экране при дифракции плоской волны на длинной щели показано на рис. 209. Вместо бесконечно узкой линии, которая получалась бы в фокальной плоскости линзы согласно законам геометрической оптики, на экране получаются дифракционные полосы, параллельные щели. Рядом с яркой центральной полосой будут слабые побочные полосы, отделенные друг от друга полной темнотой, причем ширина побочных полос вдвое меньше ширины центральной.

Рис. 209. Распределение освещенности на экране при дифракции плоской волны на щели

Освещенность в центре первой побочной полосы, как видно из формулы (6), почти в 25 раз меньше освещенности в центре картины. Освещенность обращается в нуль тогда, когда аргумент синуса в (6) кратен Это соответствует углам дифракции 0, При которых, как видно из (4),

Отметим, что положение минимумов освещенности легко найти и без помощи формулы (6). Для этого достаточно только сообразить, что минимумам соответствует разность хода I между крайними лучами (рис. 207), равная целому числу длин волн X. Действительно, если разность хода I равна, например, X, то всю щель можно разбить на пары одинаковых участков, отстоящих друг от друга на Разность хода вторичных волн от каждой такой пары равна и эти волны в точке наблюдения гасят друг друга.

Чем уже щель, тем шире дифракционные полосы. Из формулы (7) видно, что при уменьшении ширины щели до размеров порядка длины волны X центральная полоса расплывается на весь экран.

В чем заключаются особенности дифракционных явлений в оптике?

Сформулируйте принцип Гюйгенса-Френеля. Как рассчитать колебания в некоторой точке, вызываемые проходящей через отверстие в экране световой волной?

Что такое зоны Френеля? Как осуществляется их построение?

Докажите, опираясь на формулу (2), что площади зон Френеля одинаковы.

Как объяснить периодические изменения освещенности в центре дифракционной картины от круглого отверстия при монотонном изменении диаметра отверстия или расстояния от отверстия до экрана?

Как оценить расстояние от препятствия (экрана или отверстия в нем) до точки наблюдения, - при котором становятся заметными дифракционные явления?

Чем отличаются условия наблюдения дифракции Фраунгофера и дифракции Френеля?

Покажите, что дифракция Френеля и дифракция Фраунгофера не представляют собой разные физические явления, а соответствуют разным условиям наблюдения одного и того же явления. Сравните дифракцию Френеля при с дифракцией Фраунгофера.

Как изменятся ширина центральной полосы при дифракции Фраунгофера на щели и освещенность в ее середине, если ширину щели увеличить вдвое? Изменится ли при этом отношение освещенностей в побочных и центральной дифракционных полосах?

Часто волна встречает на своем пути небольшие (по сравнению с ее длиной) препятствия. Соотношение между длиной волны и размером препятствий определяет в основном поведение волны.

Волны способны огибать края препятствий. Когда размеры препятствий малы, волны, огибая края препятствий, смыкаются за ними. Так, морские волны свободно огибают выступающий из воды камень, если его размеры меньше длины волны или сравнимы с ней. За камнем волны распространяются так, как если бы его не было совсем (маленькие камни на рис. 127). Точно так же волна от брошенного в пруд камня огибает торчащий из воды прутик. Только за препятствием большого по сравнению с длиной волны размера (большой камень на рис. 127) образуется «тень»: волны за него не проникают.

Способностью огибать препятствия обладают и звуковые волны. Вы можете слышать сигнал машины за углом дома, когда самой машины не видно. В лесу деревья заслоняют ваших товарищей. Чтобы их не потерять, вы начинаете кричать. Звуковые волны в отличие от света свободно огибают стволы деревьев и доносят ваш голос до товарищей. Отклонение от прямолинейного распространения волн, огибание волнами препятствий, называется дифракцией. Дифракция присуща любому волновому процессу в той же мере, как и интерференция. При дифракции происходит искривление волновых поверхностей у краев препятствий.

Дифракция волн проявляется особенно отчетливо в случаях, когда размеры препятствий меньше длины волны или сравнимы с ней.

Явление дифракции волн на поверхности воды можно наблюдать, если поставить на пути волн экран с узкой щелью, размеры которой меньше длины волны (рис. 128). Хорошо будет видно, что за экраном распространяется круговая волна, как если бы в отверстии экрана располагалось колеблющееся тело -источник волн. Согласно принципу Гюйгенса так и должно быть. Вторичные источники в узкой щели располагаются столь близко друг к другу, что их можно рассматривать как один точечный источник.


Если размеры щели велики по сравнению с длиной волны, то картина распространения волн за экраном совершенно иная (рис. 129). Волна проходит сквозь щель, почти не меняя своей формы. Только по краям можно заметить небольшие искривления волновой поверхности, благодаря которым волна частично проникает и в пространство за экраном. Принцип Гюйгенса позволяет понять, почему происходит дифракция. Вторичные волны, испускаемые участками среды, проникают за края препятствия, расположенного на пути распространения волны.

ДИФРАКЦИЯ СВЕТА

Если свет представляет собой волновой процесс, то, кроме интерференции, должна наблюдаться и дифракция света. Ведь дифракция - огибание волнами препятствий - присуща любому волновому движению. Но наблюдать дифракцию света нелегко. Дело в том, что волны заметным образом огибают препятствия, размеры которых сравнимы с длиной волны, а длина световой волны очень мала.

Пропуская тонкий пучок света через маленькое отверстие, можно наблюдать нарушение закона прямолинейного распространения света. Светлое пятно против отверстия будет большего размера, чем это следует ожидать при прямолинейном распространении света.

Опыт Юнга. В 1802 г. Юнг, открывший интерференцию света, поставил классический опыт по дифракции (рис. 203). В непрозрачной ширме он проколол булавкой два маленьких отверстия В и С на небольшом расстоянии друг от друга.

Эти отверстия освещались узким световым пучком, прошедшим в свою очередь через малое отверстие А в другой ширме. Именно эта деталь, до которой очень трудно было додуматься в то время, решила успех опыта. Интерферируют только когерентные волны. Возникшая в соответствии с принципом Гюйгенса сферическая волна от отверстия А возбуждала в отверстиях В и С когерентные колебания. Вследствие дифракции из отверстий В и С выходили два световых конуса, которые частично перекрывались. В результате интерференции световых волн на экране появлялись чередующиеся светлые и темные полосы. Закрывая одно из отверстий, Юнг обнаруживал, что интерференционные полосы исчезали. Именно с помощью этого опыта впервые Юнгом были измерены длины волн, соответствующие световым лучам разного цвета, причем весьма точно.

Теория Френеля. Исследование дифракции получило свое завершение в работах Френеля. Френель не только более детально исследовал различные случаи дифракции на опыте, но и построил количественную теорию дифракции, позволяющую в принципе рассчитать дифракционную картину, возникающую при огибании светом любых препятствий. Им же было впервые объяснено прямолинейное распространение света в однородной среде на основе волновой теории.

Этих успехов Френель добился, объединив принцип Гюйгенса с идеей интерференции вторичных волн. Об этом кратко уже упоминалось в четвертой главе.

Для того чтобы вычислить амплитуду световой волны в любой точке пространства, надо мысленно окружить источник света замкнутой поверхностью. Интерференция волн от вторичных источников, расположенных на этой поверхности, определяет амплитуду в рассматриваемой точке пространства.

Такого рода расчеты позволили понять, каким образом свет от точечного источника S, испускающего сферические волны, достигает произвольной точки пространства В (рис. 204).

Если рассмотреть вторичные источники на сферической волновой поверхности радиусе R. то результат интерференции вторичных волн от этих источников в точке В оказывается таким, как если бы лишь вторичные источники на малом сферическом сегменте ab посылали свет в точку В. Вторичные волны, испущенные источниками, расположенными на остальной части поверхности, гасят друг друга в(результате интерференции. Поэтому все происходит так, как если бы свет распространялся лишь вдоль прямой SB, т. е. прямолинейно.

Одновременно Френель рассмотрел количественно дифракцию на различного рода препятствиях.

Любопытный случай произошел на заседании Французской Академии наук в 1818 г. Один из ученых, присутствовавших на заседании, обратил внимание на то, что теории Френеля вытекают факты, явно противоречащие здравому смыслу. При определенных размерах отверстия и определенных расстояниях от отверстия до источника света и экрана в центре светлого пятна должно находиться темное пятнышко. За маленьким непрозрачным диском, наоборот, должно находиться светлое пятно в центре тени. Каково же было удивление ученых, когда поставленные эксперименты доказали, что так и есть на самом деле.

Дифракционные картины от различных препятствий. Из-за того, что длина световой волны очень мала, угол отклонения света от направления прямолинейного распространения невелик. Поэтому для отчетливого наблюдения дифракции (в частности, в тех случаях, о которых только что говорилось) расстояние между препятствием, которое огибается светом, и экраном должно быть велико.

На рисунке 205 показано, как выглядят на фотографиях дифракционные картины от различных препятствий: а) тонкой проволочки; б) круглого отверстия; в) круглого экрана.

Зоны Френеля для трехсантиметровой волны

Зонная пластинка для трехсантиметровых волн

Трёхсантиметровые волны: пятно Пуассона

Трёхсантиметровые волны: фазовая зонная пластинка

Круглое отверстие. Геометрическая оптика - дифракция Френеля

Круглое отверстие. Дифракция Френеля - дифракция Фраунгофера

Сравнение картин дифракции: ирисовая диафрагма и круглое отверстие

Пятно Пуассона

Л 3 -4

Дифракция света

Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле – любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшое отверстие в экранах и т.д.

Между интерференцией и дифракцией нет существенного физического различия. Оба явления заключаются в перераспределении светового потока в результате наложения (суперпозиции) волн. По историческим причинам отклонение от закона независимости световых пучков, возникающее в результате суперпозиции когерентных волн, принято называть интерференцией волн. Отклонение от закона прямолинейного распространения света, в свою очередь, принято называть дифракцией волн.

Наблюдение дифракции осуществляется обычно по следующей схеме. На пути световой волны, распространяющейся от некоторого источника, помещается непрозрачная преграда, закрывающая часть волновой поверхности световой волны. За преградой располагается экран, на котором возникает дифракционная картина.

Различают два вида дифракции. Если источник света S и точка наблюденияP расположены от препятствия настолько далеко, что лучи, падающие на препятствие, и лучи, идущие в точкуP , образуют практически параллельные пучки, говорят одифракции в параллельных лучах или одифракции Фраунгофера . В противном случае говорят одифракции Френеля . Дифракцию Фраунгофера можно наблюдать, поместив за источником светаS и перед точкой наблюденияP по линзе так, чтобы точкиS иP оказались в фокальной плоскости соответствующей линзы (рис.).

Принципиально дифракция Фраунгофера не отличается от дифракции Френеля. Количественный критерий, позволяющий установить, какой вид дифракции имеет место, определяется величиной безразмерного параметра , гдеb – характерный размер препятствия,l – расстояние между препятствием и экраном, на котором наблюдается дифракционная картина,– длина волны. Если

Явление дифракции качественно объясняется с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени. Для монохроматической волны волновая поверхность есть поверхность, на которой колебания совершаются в одинаковой фазе.

Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис.). Согласно Гюйгенсу, каждая точка выделяемого отверстием участка волнового фронта служит источником вторичных волн (в изотропной среде они сферические). Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т.е. огибает края отверстия.

Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде, а, следовательно, и об интенсивности на фронте волны. Из повседневного опыта известно, что в большом числе случаев лучи света не отклоняются от их прямолинейного распространения. Так, предметы, освещенные точечным источником света, дают резкую тень. Таким образом, принцип Гюйгенса нуждается в дополнении, позволяющем определять интенсивность волны.

Френель дополнил принцип Гюйгенса идеей интерференции вторичных волн. Согласно принципу Гюйгенса-Френеля , световая волна, возбуждаемая каким-либо источникомS , может быть представлена как результат суперпозиции когерентных вторичных волн, излучаемых малыми элементами некоторой замкнутой поверхности, охватывающей источникS . Обычно в качестве этой поверхности выбирают одну из волновых поверхностей, поэтому источники вторичных волн действуют синфазно. В аналитическом виде для точечного источника этот принцип записывается в виде

, (1) гдеE – световой вектор, включающий в себя временную зависимость
,k – волновое число,r – расстояние от точкиP на поверхности S до точкиP ,K – коэффициент, зависящий от ориентации площадки по отношению к источнику и точкеP . Правомерность формулы (1) и вид функцииK устанавливается в рамках электромагнитной теории света (в оптическом приближении).

В том случае, когда между источником S и точкой наблюденияP имеются непрозрачные экраны с отверстиями, действие этих экранов может быть учтено следующим образом. На поверхности непрозрачных экранов амплитуды вторичных источников считаются равными нулю; в области отверстий амплитуды источников такие же, как при отсутствии экрана (так называемое приближение Кирхгофа).

Метод зон Френеля. Учет амплитуд и фаз вторичных волн позволяет в принципе найти амплитуду результирующей волны в любой точке пространства и решить задачу о распространении света. В общем случае расчет интерференции вторичных волн по формуле (1) довольно сложный и громоздкий. Однако ряд задач можно решить, применив чрезвычайно наглядный прием, заменяющий сложные вычисления. Метод этот получил название методазон Френеля .

Суть метода разберем на примере точечного источника света S . Волновые поверхности представляют собой в этом случае концентрические сферы с центром в S .Разобьем изображенную на рисунке волновую поверхность на кольцевые зоны, построенные так, что расстояния от краев каждой зоны до точкиP отличаются на
. Обладающие таким свойством зоны называютсязонами Френеля . Из рис. видно, что расстояниеот внешнего края – m -й зоны до точкиP равно

, гдеb – расстояние от вершины волновой поверхностиO до точкиP .

Колебания, приходящие в точку P от аналогичных точек двух соседних зон (например, точек, лежащих в середине зон или у внешних краев зон), находятся в противофазе. Поэтому колебания от соседних зон будут взаимно ослаблять друг друга и амплитуда результирующего светового колебания в точкеP

, (2) где,, … – амплитуды колебаний, возбуждаемых 1-й, 2-й, … зонами.

Для оценки амплитуд колебаний найдем площади зон Френеля. Пусть внешняя граница m -й зоны выделяет на волновой поверхности сферический сегмент высоты. Обозначив площадь этого сегмента через, найдем, что, площадьm -й зоны Френеля равна
. Из рисунка видно, что. После несложных преобразований, учитывая
и
, получим

. Площадь сферического сегмента и площадьm -й зоны Френеля соответственно равны

,
. (3) Таким образом, при не слишком большихm площади зон Френеля одинаковы. Согласно предположению Френеля, действие отдельных зон в точкеP тем меньше, чем больше уголмежду нормальюn к поверхности зоны и направлением наP , т.е. действие зон постепенно убывает от центральной к периферийным. Кроме того, интенсивность излучения в направлении точкиP уменьшается с ростомm и вследствие увеличения расстояния от зоны до точкиP . Таким образом, амплитуды колебаний образуют монотонно убывающую последовательность

Общее число зон Френеля, умещающихся на полусфере, очень велико; например, при
и
число зон достигает~10 6 . Это означает, что амплитуда убывает очень медленно и поэтому можно приближенно считать

. (4) Тогда выражение (2) после перегруппировки суммируется

, (5) так как выражения в скобках, согласно (4), равны нулю, а вклад последнего слагаемого ничтожно мал. Таким образом, амплитуда результирующих колебаний в произвольной точкеP определяется как бы половинным действием центральной зоны Френеля.

При не слишком больших m высота сегмента
, поэтому можно считать, что
. Подставив значение для, получим для радиуса внешней границыm -й зоны

. (6) При
и
радиус первой (центральной) зоны
. Следовательно, распространение света отS кP происходит так, как если бы световой поток шел внутри очень узкого канала вдольSP , т.е. прямолинейно.

Правомерность деления волнового фронта на зоны Френеля подтверждена экспериментально. Для этого используются зонная пластинка – в простейшем случае стеклянная пластинка, состоящая из системы чередующихся прозрачных и непрозрачных концентрических колец, с радиусами зон Френеля заданной конфигурации. Если поместить зонную пластинку в строго определенном месте (на расстоянии a от точечного источника и на расстоянииb от точки наблюдения), то результирующая амплитуда будет больше, чем при полностью открытом волновом фронте.

Дифракция Френеля на круглом отверстии. Дифракция Френеля наблюдается на конечном расстоянии от препятствия, вызвавшего дифракцию, в данном случае экрана с отверстием. Сферическая волна, распространяющаяся от точечного источникаS , встречает на своем пути экран с отверстием. Дифракционная картина наблюдается на экране, параллельном экрану с отверстием. Ее вид зависит от расстояния между отверстием и экраном (для данного диаметра отверстия). Проще определить амплитуду световых колебаний в центре картины. Для этого разобьем открытую часть волновой поверхности на зоны Френеля. Амплитуда колебания, возбуждаемая всеми зонами равна

, (7) где знак плюс отвечает нечетнымm и минус – четнымm .

Когда отверстие открывает нечетное число зон Френеля, то амплитуда (интенсивность) в центральной точке будет больше, чем при свободном распространении волны; если четное то амплитуда (интенсивность) будет равна нулю. Например, если отверстие открывает одну зону Френеля, амплитуда
, то интенсивность (
) больше в четыре раза.

Расчет амплитуды колебания на внеосевых участках экрана более сложен, так как соответствующие зоны Френеля частично перекрываются непрозрачным экраном. Качественно ясно, что дифракционная картина будет иметь вид чередующихся темных и светлых колец с общим центром (если m четное, то в центре будет темное кольцо, еслиm нечетное – то светлое пятно), причем интенсивность в максимумах убывает с расстоянием от центра картины. Если отверстие освещается не монохроматическим светом, а белым светом, то кольца окрашены.

Рассмотрим предельные случаи. Если отверстие открывает лишь часть централь­ной зоны Френеля, на экране получается размытое светлое пятно; чередования светлых и темных колец в этом случае не возникает. Если отверстие открывает большое число зон, то
и амплитуда в центре
, т.е. такая же, как и при полностью открытом волновом фронте; чередование светлых и темных колец происходит лишь в очень узкой области на границе геометрической тени. Фактически дифракционная картина не наблюдается, и распространение света, по сути, является прямолинейным.

Дифракция Френеля на диске. Сферическая волна, распространяющаяся от точечного источникаS , встречает на своем пути диск (рис.). Дифракционная картина, наблюдаемая на экране, является центрально симметричной. Определим амплитуду световых колебаний в центре. Пусть диск закрываетm первых зон Френеля. Тогда амплитуда колебаний равна

или
, (8) так как выражения, стоящие в скобках, равны нулю. Следовательно, в центре всегда наблюдается дифракционный максимум (светлое пятно), соответствующий половине действия первой открытой зоны Френеля. Центральный максимум окружен концентрическими с ним темными и светлыми кольцами. При небольшом числе закрытых зон амплитуда
мало отличается от. Поэтому интенсивность в центре будет почти такая же, как при отсутствии диска. Изменение освещенности экрана с расстоянием от центра картины изображено на рис.

Рассмотрим предельные случаи. Если диск закрывает лишь небольшую часть центральной зоны Френеля, он совсем не отбрасывает тени – освещенность экрана всюду остается такой же, как при отсутствии диска. Если диск закрывает много зон Френеля, чередование светлых и темных колец наблюдается только в узкой области на границе геометрической тени. В этом случае
, так что светлое пятно в центре отсутствует, и освещенность в области геометрической тени практически всюду равна нулю. Фактически дифракционная картина не наблюдается, и распространение света является прямолинейным.

Дифракция Фраунгофера на одной щели. Пусть плоская монохроматическая волна падает нормально плоскости узкой щели ширинойa . Оптическая разность хода между крайними лучами, идущими от щели в некотором направлении

.

Разобьем открытую часть волновой поверхности в плоскости щели на зоны Френеля, имеющие вид равновеликих полос, параллельных щели. Так как ширина каждой зоны выбирается такой, чтобы разность хода от краев этих зон была равна
, то на ширине щели уместится
зон. Амплитуды вторичных волн в плоскости щели будут равны, так как зоны Френеля имеют одинаковые площади и одинаково наклонены к направлению наблюдения. Фазы колебаний от пары соседних зон Френеля отличаются на, поэтому, суммарная амплитуда этих колебаний равна нулю.

Если число зон Френеля четное, то

, (9а) и в точкеB наблюдается минимум освещенности (темный участок), если же число зон Френеля нечетное, то

(9б) и наблюдается близкая к максимуму освещенность, соответствующей действию одной нескомпенсированной зоны Френеля. В направлении
щель действует, как одна зона Френеля, и в этом направлении наблюдается наибольшая освещенность, точкесоответствует центральный или главный максимум освещенности.

Расчет освещенности в зависимости от направления дает

, (10) где– освещенность в середине дифракционной картины (против центра линзы),– освещенность в точке, положение которой определяется направлением. График функции (10) изображен на рис. Максимумы освещенности соответствуют значениям, удовлетворяющие условиям

,
,
и т.д. Вместо этих условий для максимумов приближенно можно пользоваться соотношением (9б), дающим близкие значения углов. Величина вторичных максимумов быстро убывает. Численные значения интенсивностей главного и следующих максимумов относятся как

и т.д., т.е. основная часть световой энергии, прошедшей через щель, сосредоточена в главном максимуме.

Сужение щели приводит к тому, что центральный максимум расплывается, а его освещенность уменьшается. Наоборот, чем щель шире, тем картина ярче, но дифракционные полосы уже, а число самих полос больше. При
в центре получается резкое изображение источника света, т.е. имеет место прямолинейное распространение света.

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени. Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина - система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос.

Дифракционные явления были хорошо известны еще во времена Ньютона, но объяснить их на основе корпускулярной теории света оказалось невозможным. Первое качественное объяснение явления дифракции на основе волновых представлений было дано английским ученым Т.Юнгом. Независимо от него в 1818 г. французский ученый О.Френель развил количественную теорию дифракционных явлений. В основу теории Френель положил принцип Гюйгенса, дополнив его идеей об интерференции вторичных волн. Принцип Гюйгенса в его первоначальном виде позволял находить только положения волновых фронтов в последующие моменты времени, т. е. определять направление распространения волны. По существу, это был принцип геометрической оптики. Гипотезу Гюйгенса об огибающих вторичных волнах Френель заменил физически ясным положением, согласно которому вторичные волны, приходя в точку наблюдения, интерферируют друг с другом. Принцип Гюйгенса-Френеля также представлял собой определенную гипотезу, но последующий опыт подтвердил ее справедливость. В ряде практически важных случаев решение дифракционных задач на основе этого принципа дает достаточно хороший результат. Рис. 3.8.1 иллюстрирует принцип Гюйгенса-Френеля.

Пусть поверхность S представляет собой положение волнового фронта в некоторый момент. В теории волн под волновым фронтом понимают поверхность, во всех точках которой колебания происходят с одним и тем же значением фазы (синфазно). В частности, волновые фронта плоской волны - это семейство параллельных плоскостей, перпендикулярных направлению распространения волны. Волновые фронта сферической волны, испускаемой точечным источником - это семейство концентрических сфер.

Для того чтобы определить колебания в некоторой точке P , вызванное волной, по Френелю нужно сначала определить колебания, вызываемые в этой точке отдельными вторичными волнами, приходящими в нее от всех элементов поверхности S S 1 , ΔS 2 и т. д.), и затем сложить эти колебания с учетом их амплитуд и фаз. При этом следует учитывать только те элементы волновой поверхности S , которые не загораживаются каким-либо препятствием.

Рассмотрим в качестве примера простую дифракционную задачу о прохождении плоской монохроматической волны от удаленного источника через небольшое круглое отверстие радиуса R в непрозрачном экране (рис. 3.8.2).

Точка наблюдения P находится на оси симметрии на расстоянии L от экрана. В соответствии с принципом Гюйгенса-Френеля следует мысленно заселить волновую поверхность, совпадающую с плоскостью отверстия, вторичными источниками, волны от которых достигают точки P . В результате интерференции вторичных волн в точке P возникает некоторое результирующее колебание, квадрат амплитуды которого (интенсивность) нужно определить при заданных значениях длины волны λ, амплитуды A 0 падающей волны и геометрии задачи. Для облегчения расчета Френель предложил разбить волновую поверхность падающей волны в месте расположения препятствия на кольцевые зоны (зоны Френеля ) по следующему правилу: расстояние от границ соседних зон до точки P должны отличается на половину длины волны, т. е.

Если смотреть на волновую поверхность из точки P , то границы зон Френеля будут представлять собой концентрические окружности (рис. 3.8.3).

Из рис. 3.8.2 легко найти радиусы ρm зон Френеля:

Так в оптике λ << L , вторым членом под корнем можно пренебречь. Количество зон Френеля, укладывающихся на отверстии, определяется его радиусом R :

Здесь m - не обязательно целое число. Результат интерференции вторичных волн в точке P зависит от числа m открытых зон Френеля. Легко показать, что все зоны имеют одинаковую площадь:

Одинаковые по площади зоны должны были бы возбуждать в точке наблюдения колебания с одинаковой амплитудой. Однако у каждой последующей зоны угол α между лучом, проведенным в точку наблюдения, и нормалью к волновой поверхности возрастает. Френель высказал предположение (подтвержденное экспериментом), что с увеличением угла α амплитуда колебаний уменьшается, хотя и незначительно:

A 1 > A 2 > A 3 > ... > A 1 ,

где A m - амплитуда колебаний, вызванных m -й зоной.

Так как расстояния от двух соседних зон до точки наблюдения отличаются на λ / 2, следовательно, возбуждаемые этими зонами колебания находится в противофазе. Поэтому волны от любых двух соседних зон почти гасят друг друга. Суммарная амплитуда в точке наблюдения есть

A = A 1 - A 2 + A 3 - A 4 + ... = A 1 - (A 2 - A 3) - (A 4 - A 5) - ... < A 1 .

Таким образом, суммарная амплитуда колебаний в точке P всегда меньше амплитуды колебаний, которые вызвала бы одна первая зона Френеля. В частности, если бы были открыты все зоны Френеля, то до точки наблюдения дошла бы невозмущенная препятствием волна с амплитудой A 0 . В этом случае можно записать:

так как выражения, стоящие в скобках, равны нулю. Следовательно, действие (амплитуда), вызванное всем волновым фронтом, равно половине действия одной первой зоны.

Итак, если отверстие в непрозрачном экране оставляет открытой только одну зону Френеля, то амплитуда колебаний в точке наблюдения возрастает в 2 раза (а интенсивность - в 4 раза) по сравнению с действием невозмущенной волны. Если открыть две зоны, то амплитуда колебаний обращается в нуль. Если изготовить непрозрачный экран, который оставлял бы открытыми только несколько нечетных (или только несколько четных) зон, то амплитуда колебаний резко возрастет. Например, если открыты 1, 3 и 5 зоны, то

A = 6A 0 , I = 36I 0 .

Такие пластинки, обладающие свойством фокусировать свет, называются зонными пластинками .

При дифракции света на круглом диске закрытыми оказываются зоны Френеля первых номеров от 1 до m . Тогда амплитуда колебаний в точке наблюдения будет равна

или A = A m + 1 / 2, так как выражения, стоящие в скобках, равны нулю. Если диск закрывает зоны не слишком больших номеров, то A m + 1 ≈ 2A 0 и A A 0 , т. е. в центре картины при дифракции света на диске наблюдается интерференционный максимум. Это - так называемое пятно Пуассона , оно окружено светлыми и темными дифракционными кольцами.

Оценим размеры зон Френеля. Пусть, например, дифракционная картина наблюдается на экране, расположенном на расстоянии L = 1 м от препятствия. Длина волны света λ = 600 нм (красный свет). Тогда радиус первой зоны Френеля есть

Таким образом, в оптическом диапазоне вследствие малости длины волны размер зон Френеля оказывается достаточно малым. Дифракционные явления проявляются наиболее отчетливо, когда на препятствии укладывается лишь небольшое число зон:

Это соотношение можно рассматривать как критерий наблюдения дифракции . Если число зон Френеля, укладывающихся на препятствии, становится очень большим, дифракционные явления практически незаметны:

Это сильное неравенство определяет границу применимости геометрической оптики . Узкий пучок света, который в геометрической оптике называется лучом, может быть сформирован только при выполнении этого условия. Таким образом, геометрическая оптика является предельным случаем волновой оптики .

Выше был рассмотрен случай дифракции света от удаленного источника на препятствиях круглой формы. Если точечный источник света находится на конечном расстоянии, то на препятствие падает сферически расходящаяся волна. В этом случае геометрия задачи несколько усложняется, так как теперь зоны Френеля нужно строить не на плоской, а на сферической поверхности (рис. 3.8.4).

Расчет приводит к следующему выражению для радиусов ρm зон Френеля на сферическом фронте волны:

Все выводы изложенной выше теории Френеля остаются справедливыми и в этом случае.

Следует отметить, что теория дифракции (и интерференции) световых волн применима к волнам любой физической природы. В этом проявляется общность волновых закономерностей. Физическая природа света в начале XIX века, когда Т.Юнг, О.Френель и другие ученые развивали волновые представления, еще не была известна.

Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле – любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшое отверстие в экранах и т.д.

Между интерференцией и дифракцией нет существенного физического различия. Оба явления заключаются в перераспределении светового потока в результате наложения (суперпозиции) волн. По историческим причинам отклонение от закона независимости световых пучков, возникающее в результате суперпозиции когерентных волн, принято называть интерференцией волн. Отклонение от закона прямолинейного распространения света, в свою очередь, принято называть дифракцией волн.

Наблюдение дифракции осуществляется обычно по следующей схеме. На пути световой волны, распространяющейся от некоторого источника, помещается непрозрачная преграда, закрывающая часть волновой поверхности световой волны. За преградой располагается экран, на котором возникает дифракционная картина.

Различают два вида дифракции. Если источник света S и точка наблюдения P расположены от препятствия настолько далеко, что лучи, падающие на препятствие, и лучи, идущие в точку P , образуют практически параллельные пучки, говорят о дифракции в параллельных лучах или о дифракции Фраунгофера . В противном случае говорят о дифракции Френеля . Дифракцию Фраунгофера можно наблюдать, поместив за источником света S и перед точкой наблюдения P по линзе так, чтобы точки S и P оказались в фокальной плоскости соответствующей линзы (рис.).

Принципиально дифракция Фраунгофера не отличается от дифракции Френеля. Количественный критерий, позволяющий установить, какой вид дифракции имеет место, определяется величиной безразмерного параметра , где b – характерный размер препятствия, l – расстояние между препятствием и экраном, на котором наблюдается дифракционная картина, – длина волны. Если


Явление дифракции качественно объясняется с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени. Для монохроматической волны волновая поверхность есть поверхность, на которой колебания совершаются в одинаковой фазе.

Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис.). Согласно Гюйгенсу, каждая точка выделяемого отверстием участка волнового фронта служит источником вторичных волн (в изотропной среде они сферические). Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т.е. огибает края отверстия.

Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде, а, следовательно, и об интенсивности на фронте волны. Из повседневного опыта известно, что в большом числе случаев лучи света не отклоняются от их прямолинейного распространения. Так, предметы, освещенные точечным источником света, дают резкую тень. Таким образом, принцип Гюйгенса нуждается в дополнении, позволяющем определять интенсивность волны.

Френель дополнил принцип Гюйгенса идеей интерференции вторичных волн. Согласно принципу Гюйгенса-Френеля , световая волна, возбуждаемая каким-либо источником S , может быть представлена как результат суперпозиции когерентных вторичных волн, излучаемых малыми элементами некоторой замкнутой поверхности, охватывающей источник S . Обычно в качестве этой поверхности выбирают одну из волновых поверхностей, поэтому источники вторичных волн действуют синфазно. В аналитическом виде для точечного источника этот принцип записывается в виде


, (1) где
E – световой вектор, включающий в себя временную зависимость
,
k – волновое число, r – расстояние от точки P на поверхности S до точки P , K – коэффициент, зависящий от ориентации площадки по отношению к источнику и точке P . Правомерность формулы (1) и вид функции K устанавливается в рамках электромагнитной теории света (в оптическом приближении).

В том случае, когда между источником S и точкой наблюдения P имеются непрозрачные экраны с отверстиями, действие этих экранов может быть учтено следующим образом. На поверхности непрозрачных экранов амплитуды вторичных источников считаются равными нулю; в области отверстий амплитуды источников такие же, как при отсутствии экрана (так называемое приближение Кирхгофа).

Метод зон Френеля. Учет амплитуд и фаз вторичных волн позволяет в принципе найти амплитуду результирующей волны в любой точке пространства и решить задачу о распространении света. В общем случае расчет интерференции вторичных волн по формуле (1) довольно сложный и громоздкий. Однако ряд задач можно решить, применив чрезвычайно наглядный прием, заменяющий сложные вычисления. Метод этот получил название метода зон Френеля .

Суть метода разберем на примере точечного источника света S . Волновые поверхности представляют собой в этом случае концентрические сферы с центром в S . Разобьем изображенную на рисунке волновую поверхность на кольцевые зоны, построенные так, что расстояния от краев каждой зоны до точки P отличаются на
. Обладающие таким свойством зоны называются
зонами Френеля . Из рис. видно, что расстояние от внешнего края – m -й зоны до точки P равно


, где
b – расстояние от вершины волновой поверхности O до точки P .

Колебания, приходящие в точку P от аналогичных точек двух соседних зон (например, точек, лежащих в середине зон или у внешних краев зон), находятся в противофазе. Поэтому колебания от соседних зон будут взаимно ослаблять друг друга и амплитуда результирующего светового колебания в точке P

, (2) где,, … – амплитуды колебаний, возбуждаемых 1-й, 2-й, … зонами.

Для оценки амплитуд колебаний найдем площади зон Френеля. Пусть внешняя граница m -й зоны выделяет на волновой поверхности сферический сегмент высоты . Обозначив площадь этого сегмента через, найдем, что, площадь m -й зоны Френеля равна
. Из рисунка видно, что. После несложных преобразований, учитывая
и
, получим


. Площадь сферического сегмента и площадь
m -й зоны Френеля соответственно равны


,
. (3) Таким образом, при не слишком больших
m площади зон Френеля одинаковы. Согласно предположению Френеля, действие отдельных зон в точке P тем меньше, чем больше угол между нормалью n к поверхности зоны и направлением на P , т.е. действие зон постепенно убывает от центральной к периферийным. Кроме того, интенсивность излучения в направлении точки P уменьшается с ростом m и вследствие увеличения расстояния от зоны до точки P . Таким образом, амплитуды колебаний образуют монотонно убывающую последовательность

Общее число зон Френеля, умещающихся на полусфере, очень велико; например, при
и
число зон достигает ~10
6 . Это означает, что амплитуда убывает очень медленно и поэтому можно приближенно считать


. (4) Тогда выражение (2) после перегруппировки суммируется

, (5) так как выражения в скобках, согласно (4), равны нулю, а вклад последнего слагаемого ничтожно мал. Таким образом, амплитуда результирующих колебаний в произвольной точке P определяется как бы половинным действием центральной зоны Френеля.

При не слишком больших m высота сегмента
, поэтому можно считать, что
. Подставив значение для, получим для радиуса внешней границы
m -й зоны


. (6) При
и
радиус первой (центральной) зоны
. Следовательно, распространение света от
S к P происходит так, как если бы световой поток шел внутри очень узкого канала вдоль SP , т.е. прямолинейно.

Правомерность деления волнового фронта на зоны Френеля подтверждена экспериментально. Для этого используются зонная пластинка – в простейшем случае стеклянная пластинка, состоящая из системы чередующихся прозрачных и непрозрачных концентрических колец, с радиусами зон Френеля заданной конфигурации. Если поместить зонную пластинку в строго определенном месте (на расстоянии a от точечного источника и на расстоянии b от точки наблюдения), то результирующая амплитуда будет больше, чем при полностью открытом волновом фронте.

Дифракция Френеля на круглом отверстии. Дифракция Френеля наблюдается на конечном расстоянии от препятствия, вызвавшего дифракцию, в данном случае экрана с отверстием. Сферическая волна, распространяющаяся от точечного источника S , встречает на своем пути экран с отверстием. Дифракционная картина наблюдается на экране, параллельном экрану с отверстием. Ее вид зависит от расстояния между отверстием и экраном (для данного диаметра отверстия). Проще определить амплитуду световых колебаний в центре картины. Для этого разобьем открытую часть волновой поверхности на зоны Френеля. Амплитуда колебания, возбуждаемая всеми зонами равна


, (7) где знак плюс отвечает нечетным
m и минус – четным m .

Когда отверстие открывает нечетное число зон Френеля, то амплитуда (интенсивность) в центральной точке будет больше, чем при свободном распространении волны; если четное то амплитуда (интенсивность) будет равна нулю. Например, если отверстие открывает одну зону Френеля, амплитуда
, то интенсивность (
) больше в четыре раза.

Расчет амплитуды колебания на внеосевых участках экрана более сложен, так как соответствующие зоны Френеля частично перекрываются непрозрачным экраном. Качественно ясно, что дифракционная картина будет иметь вид чередующихся темных и светлых колец с общим центром (если m четное, то в центре будет темное кольцо, если m нечетное – то светлое пятно), причем интенсивность в максимумах убывает с расстоянием от центра картины. Если отверстие освещается не монохроматическим светом, а белым светом, то кольца окрашены.

Рассмотрим предельные случаи. Если отверстие открывает лишь часть централь­ной зоны Френеля, на экране получается размытое светлое пятно; чередования светлых и темных колец в этом случае не возникает. Если отверстие открывает большое число зон, то
и амплитуда в центре
, т.е. такая же, как и при полностью открытом волновом фронте; чередование светлых и темных колец происходит лишь в очень узкой области на границе геометрической тени. Фактически дифракционная картина не наблюдается, и распространение света, по сути, является прямолинейным.

Дифракция Френеля на диске. Сферическая волна, распространяющаяся от точечного источника S , встречает на своем пути диск (рис.). Дифракционная картина, наблюдаемая на экране, является центрально симметричной. Определим амплитуду световых колебаний в центре. Пусть диск закрывает m первых зон Френеля. Тогда амплитуда колебаний равна

или
, (8) так как выражения, стоящие в скобках, равны нулю. Следовательно, в центре всегда наблюдается дифракционный максимум (светлое пятно), соответствующий половине действия первой открытой зоны Френеля. Центральный максимум окружен концентрическими с ним темными и светлыми кольцами. При небольшом числе закрытых зон амплитуда
мало отличается от. Поэтому интенсивность в центре будет почти такая же, как при отсутствии диска. Изменение освещенности экрана с расстоянием от центра картины изображено на рис.

Рассмотрим предельные случаи. Если диск закрывает лишь небольшую часть центральной зоны Френеля, он совсем не отбрасывает тени – освещенность экрана всюду остается такой же, как при отсутствии диска. Если диск закрывает много зон Френеля, чередование светлых и темных колец наблюдается только в узкой области на границе геометрической тени. В этом случае
, так что светлое пятно в центре отсутствует, и освещенность в области геометрической тени практически всюду равна нулю. Фактически дифракционная картина не наблюдается, и распространение света является прямолинейным.

Дифракция Фраунгофера на одной щели. Пусть плоская монохроматическая волна падает нормально плоскости узкой щели шириной a . Оптическая разность хода между крайними лучами, идущими от щели в некотором направлении


.

Разобьем открытую часть волновой поверхности в плоскости щели на зоны Френеля, имеющие вид равновеликих полос, параллельных щели. Так как ширина каждой зоны выбирается такой, чтобы разность хода от краев этих зон была равна
, то на ширине щели уместится
зон. Амплитуды вторичных волн в плоскости щели будут равны, так как зоны Френеля имеют одинаковые площади и одинаково наклонены к направлению наблюдения. Фазы колебаний от пары соседних зон Френеля отличаются на
, поэтому, суммарная амплитуда этих колебаний равна нулю.

Если число зон Френеля четное, то


, (9а) и в точке
B наблюдается минимум освещенности (темный участок), если же число зон Френеля нечетное, то


(9б) и наблюдается близкая к максимуму освещенность, соответствующей действию одной нескомпенсированной зоны Френеля. В направлении
щель действует, как одна зона Френеля, и в этом направлении наблюдается наибольшая освещенность, точкесоответствует центральный или главный максимум освещенности.

Расчет освещенности в зависимости от направления дает


, (10) где– освещенность в середине дифракционной картины (против центра линзы),– освещенность в точке, положение которой определяется направлением
. График функции (10) изображен на рис. Максимумы освещенности соответствуют значениям , удовлетворяющие условиям


,
,
и т.д. Вместо этих условий для максимумов приближенно можно пользоваться соотношением (9б), дающим близкие значения углов. Величина вторичных максимумов быстро убывает. Численные значения интенсивностей главного и следующих максимумов относятся как


и т.д., т.е. основная часть световой энергии, прошедшей через щель, сосредоточена в главном максимуме.

Сужение щели приводит к тому, что центральный максимум расплывается, а его освещенность уменьшается. Наоборот, чем щель шире, тем картина ярче, но дифракционные полосы уже, а число самих полос больше. При
в центре получается резкое изображение источника света, т.е. имеет место прямолинейное распространение света.

Дифракция Фраунгофера на дифракционной решетке. Дифракционная решетка представляет собой систему одинаковых щелей, разделенных равными по ширине непрозрачными промежутками. Дифракционную картину от решетки можно рассматривать как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция.

Рассмотрим дифракционную решетку. Если ширина каждой щели равна a , а ширина непрозрачных участков между щелями b , то величина
называется
периодом дифракционной решетки .

Согласно формуле для многолучевой интерференции (Л3-3-5) освещенность в условиях интерференции световых лучей от N щелей равна


. (1) Из рис. видно, что разность хода от соседних щелей равна
. Следовательно разность фаз


, (2) где
– длина волны в данной среде. Подставив в формулу (1) выражение для (освещенность от одной щели) и (2) для , получим


(3) (– освещенность, создаваемая одной щелью на оси линзы).

Первый множитель обращается в нуль в точках, для которых

. (4) В этих точках освещенность, создаваемая каждой из щелей в отдельности, равна нулю. Будут наблюдаться главные минимумы освещенности.

Второй множитель в правой части (3) принимает экстремальное, а все выражение близкое к экстремальному, значение (локальный максимум) в точках, удовлетворяющих условию

. (5) Для направлений, определяемых этим условием, колебания от отдельных щелей взаимно усиливают друг друга. Условие (5) с достаточной точностью определяет положения главных максимумов . Число m дает порядок главного максимума.

Кроме главных минимумов в промежутке между соседними главными максимумами имеется
дополнительный минимум. Эти минимумы соответствуют направлениям, при которых второй множитель обращается в нуль. В данных направлениях колебания от отдельных щелей взаимно погашают друг друга. В соответствии с (3) направления дополнительных минимумов определяются условием

. (6) В формуле (6) m принимает все целочисленные значения кроме
, т.е. кроме тех, при которых условие (6) переходит в (5).

Между дополнительными минимумами располагаются
слабых вторичных максимумов. Интенсивность вторичных максимумов не превышает
интенсивности ближайшего главного максимума (см. Л3-3). На рис. качественно представлена дифракционная картина от четырех щелей.

Так как
, то из (4) следует, что наибольший порядок главного максимума


, т.е. определяется отношением периода решетки к длине волны. Положение главных максимумов зависит от длины волны
. Поэтому при пропускании через решетку белого света все максимумы, кроме центрального (
), разложатся в спектр, фиолетовая область которого будет обращена к центру дифракционной картины, красная – наружу. Это свойство дифракционной решетки используется для исследования спектрального состава света (определения длин волн и интенсивностей всех монохроматических компонентов), т.е. дифракционная решетка может быть использована как спектральный прибор.

Основными характеристиками всякого спектрального прибора является его дисперсия и разрешающая сила . Дисперсия определяет угловое или линейной расстояние между двумя спектральными линиями, отличающимися по длине волны на единицу (например, на 1 Å). Разрешающая сила определяет минимальную разность длин волн  , при которой две линии воспринимаются в спектре раздельно.

Угловой дисперсией называется величина


, где
 – угловое расстояние между спектральными линиями, отличающимися по длине волны на  . С помощью (4), опуская знаки, получим


. Отсюда, в пределах небольших углов (
),


. (7)

Разрешающей силой спектрального прибора называют безразмерную величину


, где
 – минимальная разность длин волн двух спектральных линий, при которой эти линии воспринимаются раздельно.

Согласно критерию Рэлея , изображения двух близлежащих одинаковых точечных источников или двух близлежащих спектральных линий с равными интенсивностями разрешимы (разделены для восприятия), если центральный максимум от одного источника (линии) совпадает с первым минимумом дифракционной картины от другого (рис.). При выполнении критерия Рэлея интенсивность “провала” между максимумами составляет 80 % интенсивности в максимуме, что является достаточным для разрешения источников (линий).

Положение m -го максимума для длины волны
и минимума, следующего за
m -м максимумом для длины волны , определяется соответственно условиями


Согласно критерию Рэлея две эти линии разрешаются спектральным прибором, если правые части этих соотношений равны между собой или


. Отсюда, для разрешающей силы получим выражение


. (8) Современные дифракционные решетки обладают довольно высокой разрешающей способностью (до
).

Разрешающая сила объектива. Используя даже идеальную оптическую систему невозможно получить стигматическое изображение точечного источника, что объясняется волновой природой света. Если на объектив падает свет от удаленного точечного источника, то вследствие дифракции световых волн, в фокальной плоскости объектива вместо точки наблюдается дифракционная картина. В результате точечный источник отображается в виде светлого пятна, окруженного чередующимися темными и светлыми кольцами. Соответствующий расчет (дифракции Фраунгофера на круглом отверстии) дает, что первый минимум отстоит от центра дифракционной картины на угловое расстояние


, где
D – диаметр объектива (или диафрагмы). Полезно сравнить этот результат с подобным результатом для дифракции на щели. В последнем случае
, где
a – ширина щели. Если
, можно положить


.

Если на объектив падает свет от двух удаленных точечных источников ис некоторым угловым расстоянием
, то имеет место наложение их дифракционных картин (рис.). Согласно критерию Рэлея, который в данном случае гласит что, две близкие точки будут еще разрешены, если середина центрального максимума для одной точки совпадает с первым минимумом для второй точки. Таким образом, наименьшее угловое расстояние между двумя точками, при котором они еще разрешаются объективом


. (9) Величина, обратная
 , называется разрешающей силой объектива


. (10)

Диаметр зрачка глаза при нормальном освещении равен примерно 2 мм. Подставив это значение в формулу (9) и взяв
, получим


. Примечательно, что расстояние между соседними светочувствительными элементами сетчатки глаза соответствует этому угловому расстоянию.

Дифракция рентгеновских лучей. Дифракция наблюдается не только на одномерной дифракционной решетке, но также трехмерных периодичных структурах. Подобными структурами являются все кристаллические тела. Однако их период (
) слишком мал для того, чтобы можно было наблюдать дифракцию в видимом свете. В случае кристаллов соотношение
выполняется только для рентгеновских лучей.

В случае света лучи сводятся при помощи линзы. Для рентгеновских лучей осуществить линзу невозможно, так как показатель преломления этих лучей во всех веществах практически равен единице. Поэтому интерференция вторичных волн достигается путем использования весьма узких пучков лучей, которые и без линзы дают на экране (или фотопластинке) пятна очень малых размеров.

Рассматриваем кристалл как совокупность параллельных кристаллографических плоскостей (плоскостей, в которых лежат узлы кристаллической решетки), отстоящих друг от друга на расстояние d . Полагаем, что при падении рентгеновского излучения на кристалл происходит частичное отражение излучения от этих плоскостей. Вторичные волны, отразившиеся от разных плоскостей, когерентны и будут интерферировать между собой. Из рис. видно, что разность хода двух волн, отразившихся от соседних плоскостей, равна
, где
– угол, называемый углом скольжения падающих лучей. Максимумы интенсивности (дифракционные максимумы) наблюдаются в тех направлениях, в которых все отраженные атомными плоскостями волны будут находиться в одинаковой фазе. Эти направления определяются условием

. (11) Это соотношение называется Вульфа-Брегга .

Кристаллографические плоскости можно провести в кристалле множеством способов (рис.). Каждая система плоскостей может дать дифракционный максимум, если для нее окажется выполненным условие (11). Однако заметную интенсивность имеет лишь те максимумы, которые дают плоскости с густо расположенными узлами.

Дифракция рентгеновских лучей от кристаллов находит два основных применения. Она используется для исследования спектрального состава рентгеновского излучения (рентгеновская спектроскопия ) и для изучения структуры кристаллов (рентгеноструктурный анализ ). Определяя направления максимумов, получающихся при дифракции исследуемого рентгеновского излучения от кристаллов с известной структурой, можно вычислить длины волн. Наблюдая дифракцию рентгеновских лучей известной длины волны на кристалле неизвестного строения можно найти межплоскостные расстояния и расшифровать структуру кристалла.

Голография. Голография есть особый способ записи и последующего восстановления изображения предмета, основанный на регистрации интерференционной картины. При освещении фотопластинки (голограммы) пучком света изображение предмета восстанавливается в почти первоначальном виде, так что создается ощущение его реальности.

Для записи предмета на светочувствительной пластинке кроме волны, отраженной от предмета (так называемой предметной волны), используется когерентная с ней волна от источника света (так называемая опорная волна). На фотопластинке фиксируется распределение интенсивности в интерференционной картине, возникающей при наложении предметной и опорной волн. При освещении проявленной фотопластинки происходит дифракция света в фотослое. В результате дифракции восстанавливается изображения предмета.

Практически идея голографии осуществляется с помощью схемы, изображенной на рис. Лазерный пучок делится на две части, причем одна его часть отражается зеркалом на фотопластинку (опорная волна), а вторая попадает на фотопластинку, отразившись от предмета (предметная волна). Опорная и предметная волны, являясь когерентными, при наложении интерферируют. Интерференционная картина фиксируется на фотопластинке, после ее проявления получается голограмма – изображение интерференции.

Для восстановления изображения голограмма помещается в то же самое положение, где она находилась до регистрации. Ее освещают опорным пучком того же лазера (вторая часть лазерного пучка перекрывается диафрагмой). В результате дифракции опорной волны возникает несколько волн. Одна волна дает мнимое изображение, которое точно воспроизводит предмет. Другая волна образует действительное изображение предмета. Действительное изображение псевдоскопично – оно имеет рельеф, обратный рельефу предмета (выпуклые места заменены вогнутыми и наоборот). Третья волна является продолжением падающей с меньшей интенсивностью.

Рассмотрим принцип голографии на простом примере. Пусть на фотопластинку падают две когерентные волны, идущих под углом друг к другу. Волна 1 является опорной, волна 2 – предметной (предмет в данном случае представляет бесконечно удаленную точку). Для простоты, предположим, что волна 1 падает на пластинку нормально.

Вследствие интерференции волн на пластинке образуется (и фиксируется) система прямолинейных полос – максимумов и минимумов интенсивности. Пусть точки a и b соответствуют серединам соседних максимумов. Тогда разность хода соответствующих лучей предметной волны до этих точек равна . Из рис. видно, что разность хода
и, следовательно,


. (12)

Направим свет опорной волны на проявленную фотопластинку. Пластинка является дифракционной решеткой, период которой определяется формулой (12). Особенность этой решетки состоит в том, что ее прозрачность изменяется плавно (у обычных решеток она изменялась скачком). Эта особенность приводит к тому, что интенсивность дифракционных максимумов выше 1-го практически равна нулю и результирующая дифракционная картина определяется условием

. (13) Максимум m 0 лежит на продолжении опорного пучка. Максимум m +1 имеет такое же направление, какое имела предметная волна. Кроме того, возникает максимум m 1.

Сходная ситуация возникает и при освещении голограммы, полученной от реального предмета. При этом будет восстановлена световая волна, отраженная предметом (ей отвечает m +1). Кроме нее, возникают еще две волны (отвечающие m 0 и m 1). Последние распространяются в других направлениях и не мешают восприятию мнимого изображения предмета (которое и представляет главный интерес).

Рассмотренный способ дает одноцветные изображения (цвета лазера). Цветное зрение связано с тремя типами светочувствительных элементов сетчатки глаза, реагирующих на красное, зеленое и синее. Зрительное восприятие, поэтому, складывается из трех одноцветных изображений, соответственно красного, зеленого и синего. Это свойство зрения используется в цветной голографии.

Цветная голография основана на записи объемной интерференционной картины. Восстановление изображения происходит при отражении света от голограммы. Схема записи и восстановления цветного изображения приведена на рис. При записи предмет (последовательно или одновременно) освещается излучением трех цветов: красным, зеленым и синим. В толще фотоэмульсии образуется (и фиксируются) три пространственные интерференционные картины. При освещении белым цветом каждая из систем формирует свое одноцветное изображение предмета. В результате, при наложении трех одноцветных, получаются цветное изображение предмета.